
-
Vol 3

GEMTMRCS

GEM ™ Resource Construction Set

5074 • 2024 . 201

COPYRIGHT

Copyright © 1986 Digital Research Inc. All rights reserved. No part of this publication
may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated
into any language or computer language, in any form or by any means, electronic,
mechanical, magnetic, optical, chemical, manual, or otherwise, without the prior written
permission of Digital Research Inc., 60 Garden Court, Box DR!, Monterey, California
93942.

DISCLAIMER

DIGITAL RESEARCH INC. MAKES NO REPRESENTATIONS OR WARRANTIES WITH
RESPECT TO THE CONTENTS HEREOF AND SPECIFICALLY DISCLAIMS ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE.
Further, Digital Research Inc. reserves the right to revise this publication and to make
changes from time to time in the content hereof without obligation of Digital Research
Inc. to notify any person of such revision or changes.

NOTICE TO USER

This manual should not be construed as any representation or warranty with respect to
the software named herein. Occasionally changes or variations exist in the software
that are not reflected in the manual. Generally, if such changes or variations are
known to exist and to affect the product significantly, a release note or READ.ME file
accompanies the manual and distribution disk(s). In that event, be sure to read the
release note or READ.ME file before using the product.

TRADEMARKS

Digital Research and its logo are registered trademarks of Digital Research Inc. GEM,
GEM Desktop, GEM Paint, GEM Graph, and the GEM logo are trademarks of Digital
Research Inc. We Make Computers Work is a service mark of Digital Research Inc.
Lattice is a trademark of Lattice, Incorporated.

First Edition: June 1986

Release Note 01
GEM Programmer's Utilities Guide

First Edition, June 1986

Converting .DEF Files in the 68K Environment

In the 68K environment, to convert an existing .DEF file to the .DFN
format used by GEM™ Resource Construction Set, you cannot simply
rename the file. You must run the utility program DEF2DFN.PRG.

Programming for the Atari™ ST

If you are writing an application for the Atari ST series, note the
following:

• The GEM software, including GEM ReS, does not support the Atari's
40-character low-resolution mode.

• Because the Atari TOS ™ operating system does not force" pathnames
or filenames to upper case, certain fields (notably the "Object Name"
field in several GEM ReS dialogs) require that you enter the
characters in upper case. If you use lowercase characters, nothing
appears in the field.

• To allow the ST to use a television set as a monitor, the length of the
Message Line in an ALERT tree (GEM ReS) is restricted to thirty
characters, not the forty characters supported by other DOS and 68K
systems. GEM ReS does not enforce this restriction; the
responsibility is yours. However, GEM ReS helps you by including
character counts in the Edit Unformatted String Object dialog.

End of Release Note

Copyright © 1986 Digital Research Inc. All rights reserved. GEM is a trademark of Digital
Research Inc. Atari and TOS are trademarks of Atari Corp.

Contents

1 Introduction to GEM RCS
What Are Resources? . 1-2
GEM RCS Screen. 1-4

Menu Bar. 1-5
Title Bar. 1-5
Close Box. 1-6
Toolkit. 1-6
View Window. 1-6
Parts Box. 1-6
Scroll Bars and Sliders. 1-6

Mouse Techniques. 1-7
Sizing Objects . 1-8
Deleting Trees or Objects '. . . 1-8

Workspace and Memory Use . 1-9

2 GEM RCS Tutorial
Starting GEM RCS . 2-1
Creatin.g a Menu .. " . 2-1

Choosing and Naming a MENU Object Tree Icon 2-2
Opening the Object Tree . 2-3
Adding a Menu Title. 2-3
Adding Entries to the Menu. 2-4
Editing the Entries. 2-4
Sizing the Menu Box . 2-6
Sizing the Commands. 2-6
Extending the Separator Line 2-6
Sorting the Objects in the Menu. 2-7
Closing the MENU Object Tree. 2-7

Creating a Dialog Box . 2-7
Choosing and Naming a DIALOG Object Tree Icon . . . 2-8
Opening the Object Tree . 2-8
Choosing Objects for Your Dialog Box '. 2-8

iii

Contents

Customizing the STRING Object. 2-9
Customizing the BUTTON Object 2-9
Setting a Radio Button. 2-10
Creating Additionai Radio Buttons. 2-10
Designating the Selected Radio Button. 2-11
Customizing the Parent Box. 2-11
Creating Exit Buttons. 2-12
Resizing the Background of Your Dialog Box. 2-13
Sorting Objects in the Dialog. 2-13
Closing the DIALOG Object Tree. 2-14

Saving a Resource File. 2-14
Quitting GEM RCS . 2-15

3 GEM ReS Reference
Aspect Ratio and Screen Resolution. 3-1
File and Desk Menus . 3-3

File Menu. 3-3
Desk Menu. 3-3

Using the Parts Box. 3-4
MENU Tree Objects . 3-4
DIALOG Tree and PANEL Tree Objects 3-5
ALERT Tree Objects . 3-6
FREE Tree Objects . 3-7

Object Classes. 3-7
Unformatted Strings and Formatted Text 3-8

Adding Objects to Trees . 3-9
Moving, Copying, and Deleting Objects 3-10
Sizing Objects. 3-11
Maintaining the Parent-Child Size Relationship. 3-11
Icons and Bit Images. 3-12

Loading Icons. 3-12
Loading Bit Images. 3-13

Using FREE Trees. 3-13
Free-String Objects . 3-13
FREE Image Objects . 3-14

Using the Object Editing Dialogs.3-14
Edit Unformatted String Object Dialog 3-15

iv

Contents

Edit Box Type Object Dialog. 3-15
Edit Formatted Text Object Dialog 3-15
Edit Bit Image Object Dialog. 3-16
Edit Icon Object Dialog. 3-16

Using the Clipboard. 3-17
Using the Toolkit. 3-18

Descriptions of the Tools. 3-19
GEM RCS Menu Commands. 3-23

File Menu. 3-23
Global Menu. 3-25
Edit Menu. 3-27
Options Menu. 3-28
Hierarchy Menu . 3-29
RCS Menu . 3-30

Keystroke Equivalents of Menu Commands 3-30

4 RSCREATE and Other Technical Information
Using RSCREATE . 4-1

.RSH File. 4-1
Hand-Edited Resource Files. 4-1
Porting Resource Files. 4-2
Compiler Notes . 4-3

Chaining Resources. 4-3
Unknown Object Tree Types . 4-3
Arranging and Aligning Objects. 4-4
Creating a Library File . 4-5

Figures
1-1 GEM RCS Screen. 1-4

Tables
1-1 GEM RCS Mouse Techniques. 1-7
3-1 Screen Resolution and Aspect Ratio. 3-1
3-2 Object Classes. 3-8
3-3 Unformatted Strings and Formatted Text. 3-9
3-4 Keystroke Equivalents of Menu Commands. 3-31

v

vC;\."lIUII I

Introduction to ·GEM ReS

GEM™ Resource Construction Set (RCS) is a GEM application you use
to create resources (menus, dialog boxes, alert boxes, etc.) for your
GEM application programs. GEM RCS also lets you incorporate icons
and bit-images you create with GEM Icon Edit into your resource files.

You don't have to be a programmer to use GEM RCS. You can create
all of the application's resources and then give the file to a
programmer to include with the program code.

This document is divided into the following sections:

• Section 1, Introduction to GEM ReS, explains what a resource is,
.describes the GEM RCS screen, discusses the mouse techniques you
use with GEM RCS, and describes the GEM RCS workspace and how
GEM RCS uses memory.

• Section 2, GEM ReS Tutorial, acquaints you with basic terminology
and techniques as you construct a menu and a dialog box.

• Section 3, GEM ReS Reference, contains detailed descriptions of
GEM RCS's features, including the parts box, the objects you can
use in your resources, the clipboard, toolkit, and menus.

• Section 4, RSCREATE and Other Technical Information, describes
RSCREATE, a utility program with which you can modify and port
resource files. The section also describes how to chain resource
files and how to deal with unknown object tree types, and provides
some tips for speedy and efficient use of GEM RCS.

Many of the techniques you use with GEM RCS, such as choosing a
command from a drop-down menu, are the same as those you use
with the GEM Desktop TM. Be sure you have read your GEM Desktop
guide and understand these basic operations before you start working
with GEM ReS.

1-1

What Are Resources? GEM Resource Construction Set

WHAT ARE RESOURCES?

In GEM applications, resources are things that appear on the screen
(like menus, dia!ogs, or alerts) that are not actually part of the program
code. Instead, resources are kept in a separate resource file, an
arrangement that has several advantages.

• As noted previously, the resource file can be created by a non
programmer.

• The resource file can be modified or updated (again by a non
programmer) often without the application code having to be
recompiled.

• An application can exist in different national "editions," using the
same program code and different resource files for each nationality.

• An application can operate in different machine environments, using
resources generated from the same source code.

Resources are made up of objects. "Object," in this sense, is a
technical term referring to a specific set of images that can appear on
the screen, including empty boxes, boxes containing text, text strings,
and the like.

To create a resource--a menu, for example--you combine objects to
form an "object tree." The relationship between the objects in the tree
is described in family terms: the first object is the "parent"; the objects
contained within the parent are the "children."

For a complete description of objects and object trees, see Section 6,
"Object Library," in the GEM Application Environment Services
Reference Guide. (The GEM Application Environment Services are
referred to as GEM AES.)

Using GEM RCS, you can create the following kinds of object trees:

MENU

1-2

The drop-down menus characteristic of GEM applications
are contained in the resource file. No menu can be
more than one-fourth the size of the screen. This
makes it possible for the part of the screen covered by
the menu to be written to a special buffer (see· the
discussion of the menu/alert buffer in the Introduction to

GEM Resource Construction Set What Are Resources?

DIALOG

PANEL

ALERT

FREE

GEM Programming) and for the screen to be redrawn by
the GEM AES from this buffer. A screen redraw from the
menu/alert buffer is faster than a redraw handled by the
application.

To the end-user, a dialog is a GEM application's means
of providing or getting information, but GEM applications
can use dialogs for other purposes. For example, the
GEM RCS toolkit (see Figure 1-1) is actually a DIALOG in
the resource file.

Dialogs do not use the menu/alert buffer and thus can
be larger than one-fourth the size of the screen. The
objects in a dialog "snap" to character boundaries on the
screen; this snap makes it easier to align the elements
of the dialog.

A panel is similar to a dialog, except that it does not
have the automatic character boundary snap. A panel
can be used for anything that requires precise
positioning of objects. For example, the GEM RCS parts
boxes (see Figure 1-1) are panels in the resource file.

Alerts (a specialized subset of dialogs) are a GEM
application's means of displaying notices, warnings, or
error messages. Alerts have a fixed format and a size
limit of no more than one-fourth the size of the screen.
(They use the menu/alert buffer mentioned previously.)
The alert format includes an icon, a 200-character ASCII
text string (five lines of no more than forty characters
each), and up to three exit buttons. Each exit button has
a twenty-character maximum.

This category includes strings and bit-images you want
to include in the application, but not as part of the code.
In this way, you can change the string or bit-image
without having to change the code and recompile.

One example of a free string is the non-default state of
a context-sensitive menu command. For example, GEM
RCS's Global Menu has a command whose default state
is Hide Parts. The default version of the menu is
contained in the MENU tree; the non-default state of the
command (Show Parts) is stored as a free string.

1-3

GEM Res Screen GEM Resource Construction Set

GEM RCS SCREEN

When you start GEM RCS, your screen looks like the illustration below.
The labeled components are described after the illustration.

close box menu bar title bar

! File Global Edi f Options

--+[!ID
-+A:<CII
FREE

toolkit parts box view window

Figure 1-1. GEM RCS Screen

1-4

Res

scroll arrows/bar
slider

GEM Resource Construction Set GEM RCS Screen

Menu Bar

The menu bar is the top line of your screen. It contains the menu
titles File, Global, Edit, Options, Hierarchy, and RCS.

When you touch a menu title with the pointer, the menu drops down
below the menu bar. You can then choose a command by clicking on
its name in the menu.

GEM RCS's menu commands are described in detail in Section 3. Most
of the commands can also be executed by typing one of the keystroke
combinations listed in Table 3-4.

Title Bar

The title bar shows which of GEM RCS's two levels you're working in:

• root level
• object level

The root level is the highest level of the resource file. At this level,
the title bar identifies the current directory path and the resource
filename--C:\TOOLS\MVAPP.RSC, for example--and the view window
contains the icons for the object trees (MENU, DIALOG, etc.) you have
placed in the resource file.

The object level is the level at which you actually work on the objects
in a tree--for example, adding text strings, command entries, or exit
buttons. At this level, the title bar contains the tree's name
(FILEMENU, for example), without any directory path information.

Note the follo~ing about the name of your resource file:

• Each resource file starts out as UNTITLED.RSC until you save it and
give it a name .

• The resource file extension is .RSC (resource). Don't confuse it with
the application's name: GEM RCS (Resource Construction Set).

1-5

GEM RCS Screen GEM Resource Construction Set

Close Box

Clicking on the close box does the following:

• if you are at the object level, the close box closes the object and
returns you to the root level of the resource file .

• If you are at the root level, the close box closes the resource file. If
you have edited the file but not saved the edits, GEM RCS displays a
dialog asking if you want to abandon the edits or save the file.

Note: If you are working on a new file that hasn't yet been named and
saved, the close box has no effect at the root level.

The close box and the Close command on the File Menu can be used
interchangeably.

Toolkit

The toolkit (described in detail in Section 3) contains icons for the
various tools you can use to "customize" the objects in a tree. For
example, you can change an object's color, fill pattern, or alignment
with the tools.

View Window

The view window is where you design the layout of a tree and
customize its objects.

Parts Box

The parts box (described in detail in Section 3) contains icons for the
objects you can include in an object tree. The contents of the parts
box change according to the type of tree you're working on.

Scroll Bars and Sliders

GEM RCS's scroll bars and sliders work in the same manner as the
scroll bars and sliders on GEM Desktop windows. Note that in most
cases you can scroll horizontally as well as vertically.

1-6

GEM Resource Construction Set Mouse Techniques

MOUSE TECHNIQUES

Many mouse techniques you use with GEM ReS, such as clicking and
dragging, are the same as those you use with the GEM Desktop and
other GEM applications. However, the effects of these techniques are
often specific to GEM RCS, as the following table illustrates:

Table 1-1. GEM RCS Mouse Techniques

Technique Effect

click

Shift-click

Ctrl-click

double-click

drag

Ctrl-drag

Shift-drag

Ctrl-Shift-drag

Selects tree or object. GEM RCS indicates a
selected tree by highlighting its icon in reverse
video and a selected object by defining its
"extene with a dotted line.

Selects more than one object.

Selects parent of object.

Opens tree or object for editing.

Copies tree or object from parts box to view
window; moves tree or object inside view
window; moves tree or object to or from
clipboard.

Moves object's parent and all that parent's
children.

Copies tree or object inside view window;
copies tree or object to or from clipboard.

Copies object's parent and all that parent's
children.

Note: When using any of the dragging techniques to move or copy
trees or objects, remember the following:

• If you are copying from the parts box or if you are moving or

1-7

Mouse Techniques GEM Resource Construction Set

copying within the view window, the dotted line extent of the tree
or object must be entirely inside the view window or a parent
object. Here are two specific examples:

- Dragging a tree icon from the parts box to the view window: if .
any part of the extent is in the title bar or the toolkit when you
release the mouse button, the tree is not copied to the view
window.

- Dragging a MENU tree ENTRY from the parts box to the menu box
in the view window: if any part of the ENTRY extent is outside the
menu box (its parent) when you release the mouse button, the
ENTRY is not copied to the menu box .

• If you are moving or copying a tree or object to the clipboard, drag
from the upper left corner of the tree or object. If you don't, and if
any part of the extent is off the left edge of the toolkit, the tree or
object is not moved or copied to the clipboard. (The clipboard is
described in Section 3.)

Note also that when you copy a tree or object, the copy does not
retain the tree or object names associated with the original.

Sizing Objects

To change the size of an object, first select the object. GEM RCS
highlights the selected object with a dotted outline and displays the
object's "size handle" (a solid black rectangle) in the bottom right
corner. Then place the pointer on the size handle and drag the size
handle until the object is the size you want.

If the object has children, note that GEM RCS won't permit you to
make a parent object too small to contain its children.

Deleting Trees or Objects

To delete a tree or object, do any of the following:

• Drag it from the view window to the trash can icon in the toolkit.
When the trash can icon is highlighted, release the mouse button .

• Click on the tree or object to select it. Then move the pointer to

1-8

GEM Resource Construction Set Mouse Techniques

the trash can icon (without dragging the tree or object), and click on
the trash can .

• Select the tree or object and then choose the Delete command from
the Edit Menu.

You cannot retrieve an item once you place it in the trash can.

WORKSPACE AND MEMORY USE

When you start GEM RCS, it requests a portion of your computer's
memory as its workspace. Depending on how much RAM is available,
this workspace can be as much as 64K.

As you add trees and objects, you whittle away at the available
workspace. However, if you delete a tree or object, GEM RCS does
not restore the portion of the workspace occupied by the tree or
object. The only way you can regain that memory is by saving the
file. The Save and Save As... commands (described fully in Section 3)
write out and reload the resource.

To find out how much of the workspace is available, choose the Info ...
command from the Options Menu. (Menu commands are described
fully in Section 3.) The information dialog tells how many bytes the
file, tree, or object has used and how much space remains in the
workspace.

Note: The file size shown in the information dialog is only an
approximation of the size of the resource file GEM ReS will produce,
for the following reasons:

• Alerts actually take less space in the final file because they are
written out as ASCII strings .

• Shift-dragged copies of objects might use more space in the final
file.

End of Section 1

1-9

Section 2

GEM ReS Tutorial

In this tutorial introduction to GEM RCS, you will start GEM RCS and
then create the· menu and dialog box shown below.

AD Political party? I@M4dm IRepu6hcani IIndependentl
••••••••••••••••••••••• Rotate S ",boIs

OK ! Cancel!

You will then save the resource file and exit GEM ReS.

STARTING GEM Res

To start GEM RCS, start the GEM Desktop and then do the following:

1. Open the TOOLS folder and locate the RCS.APP icon.
2. Double-click on the RCS.APP icon.

CREATING A MENU

The menu you will create in the following steps contains simple text
string commands. This part of the tutorial demonstrates opening a
tree, adding objects to the tree, setting attributes, and sorting objects.

2-1

Creating a Menu GEM Resource Construction Set

Choosing and Naming a MENU Object Tree Icon

The parts box contains icons for the five kinds of object trees you can
construct with GEM RCS:

~ g
DIALOG
1 ... " ... "/1",, ...

ElS

10:.-: 8 1 -tID]
--El -+R~~U

ALERT FREE

Drag the MENU icon into the view window. You don't have to locate
the icon precisely; when you release the mouse button, GEM RCS
automatically places a copy of the icon in the upper left corner of the
window. (Remember that GEM RCS does not copy the icon to the
view window if any part of the outline you're dragging is in the toolkit
or the title bar.)

Whenever you place a new object tree in the view window, GEM RCS
displays a dialog that asks you to name it.

Enter Tree NaMe

Note: A non-blank naMe is required.

NaMe: TREE1!-

OK II Cancel I

Note that the dialog already contains the name TREE1. To use this
name for your object tree, you would simply click on the dialog's OK
button or press the Enter key. In this case, however, give the object
tree a different name. Press the Esc key to erase TREE 1, type the
name APPMENU5, and then click on the OK button or press the Enter
key. (See your GEM Desktop guide for a full description of entering
and editing text in dialogs.)

2-2

GEM Resource Construction Set Creating a Menu

Opening the Object Tree

Double-click on the APPMENUS icon. The following changes take
place:

• The title bar now says APPMENUS.

• The view window contains a menu bar with two titles--File and
Desk--and a shaded background area. (The Desk Menu is at the
extreme right of the menu bar.)

• The parts box contains the four objects that can appear in the MENU
object tree: the menu TITLE, an ENTRY (each command text string is
an ENTRY), a line pattern to separate entries, and a box in which
you can place menu items that are not text strings (fill patterns or
line styles, for example).

In this tutorial you'll create a new menu from scratch. In Section 3
we'll tell you how you can use the existing File Menu and Desk Menu.

Adding a Menu Title .

Drag the TITLE object from the parts box to the menu bar, placing it
after "File". Be careful not to drag into the GEM RCS title bar or the
toolkit. If you do, GEM RCS cancels what you've dragged.

Now double-click on TITLE. The following dialog appears on your
screen:

Edit UnforMatted String Object

Text: STRING
~I---------A~-----~A-----~A--------------------~

29 39 49 characters
(OPtional) Object NaMe: ____ ____ OK

Do the following to edit and name the menu's title:

1. Press the Esc key to erase the text.

I Cancel I

2-3

Creating a Menu GEM Resource Construction Set

2. Press the spacebar, type Options, and then press the spacebar
again. (If you don't press the spacebar, there won't be enough blank
space between menu titles.)

3. Move the cursor to the Object Name field and type OPTITLE.

4. Click on the OK button or press the Enter key.

Adding Entries to the Menu

To add entries (commands) to the menu, do the following:

1. Click on the menu's title, Options. This selects the title and also
displays a small menu box below the menu bar.

2. Place the tip of the pointer just inside the lower right corner of the
menu box and press the mouse button. When the pointing finger
icon appears, drag down and to the right to make the menu box
larger. Make it larger than you think you need; you'll make it the
right size later.

3. Drag an ENTRY from the parts box and place it in the upper left
corner of the menu box. Don't crowd the corner too tightly, and
make sure the outline you're dragging is entirely inside the menu
box.

4. Copy this ENTRY by Shift-dragging. Place the copy just below the
first ENTRY.

5. Drag a separator line from the parts box and place it just below the
two entries.

6. Shift-drag the ENTRY once more, placing the new copy below the
separator line.

Editing the Entries

The next step is to convert each generic ENTRY into a command an
end-user can choose. To do so, do the following:

1. Double-click on the first ENTRY in the menu. GEM RCS displays the
Edit Unformatted String Object dialog.

2-4

GEM Resource Construction Set Creating a Menu

2. Press the Esc key to erase the text in the dialog.

3. Press the spacebar twice (to put two blank spaces before the
command) and then type Load File.... (The three dots are a GEM
convention indicating that choosing the command will cause a
dialog to be displayed.) Don't click on the OK button yet.

4. Many GEM applications use keystroke equivalents for their menu
commands. Let's say the end-user could type Ctrl-L to produce the
same effect as choosing the Load File ... command. To indicate this
in the menu, press the spacebar several times and then type A L,
followed by a single blank space.

5. Move the cursor to the Object Name field and type OPSLOAD.

6. Click on the OK button or press the Enter key.

Note to Step 4: GEM application menus follow the convention that A
represents the Ctrl key and that a filled diamond represents the Alt
key. (The keystroke combination Ctrl-G produces a filled diamond in
the Edit Unformatted String Object dialog.) GEM application menus
also follow the convention of surrounding the command text string
with two leading blank spaces and a single trailing blank space.

Take the same steps for the second ENTRY, with the following
variations:

• The command is Delete File
• The keystroke equivalent is AD.
• The Object Name is OPSDEL T.

Don't forget the leading and trailing spaces, and don't worry if the A L
and A 0 don't line up properly at first. You can fix that simply by
adding or removing spaces in the Edit Unformatted String Object
dialog. The editing techniques are the same as for any GEM
application dialog.

Now edit the third ENTRY, with the following variations:

• The command is Rotate Symbols.
• It has no keystroke equivalent.
• The Object Name is OPSROTE.

2-5

Creating a Menu GEM Resource Construction Set

Sizing the Menu Box

To make the menu box the right size, first select the box by clicking
inside it away from the commands or the separator line. You'll know
you have been successful if the size handle appears at the box's lower
right corner.

Next, drag the size handle until the menu box is the size you want.

You can also size the menu box without first selecting it. Use the
same technique described in Step 2 under "Adding Entries to the
Menu."

Sizing the Commands

Because GEM AES only highlights and enables the area contained
within the extent of an ENTRY, you should make each command's
extent match the full width of the menu box. If you don't, your
application's menus will have a visual and functional inconsistency that
the end-user will probably find displeasing.

To size a command, you can do any of the following:

• Select it and drag its size handle all the way to the right border of
the menu box .

• Select it, display the alignment pop-up menu (see
left), and choose the Fill Horizontal option .

• In the Text field of the Edit Unformatted String Object dialog, put
blank spaces after the string value of each ENTRY.

Extending the Separator Line

To extend the separator line all the way across the menu box, do the
following:

1. Double-click on the separator line. GEM ReS displays the Edit
Unformatted String Object dialog. The heavy bars in the Text field
of the dialog are equivalents to the shaded separator line in the
menu.

2-6

GEM Resource Construction Set Creating a Menu

2. To extend the line, type several Ctrl-S combinations in the Text
field.

3. Click on the OK button or press the Enter key.

If the line is not long enough, repeat these steps until it is. If the line
is now too long, GEM RCS displays an alert that this object no longer
fits inside its parent. Click on the dialog's OK button and then double
click on the separator line again. Use the Backspace key to erase the
bars until the separator line is the right length.

Sorting the Objects in the Menu

The last thing you should do before closing a tree is sort the objects
in it. If you don't, at run-time your application will draw the objects at
each level of the tree in the order in which you created them, which
may be visually displeasing. By sorting the objects, you can determine
the order in which they will be drawn.

To sort the objects in your menu tree, do the following:

1. Ctrl-click on any of the commands. This selects the menu box.

2. Display the Hierarchy Menu and choose the Sort Children ...
command. GEM RCS displays a dialog with four sorting options:
single-row, single-column, double-column, double-row.

3. Choose the single-column option (second from the left) and press
the Enter key or click on the OK button.

Closing the MENU Object Tree

Your menu is now complete. To close its object tree and return to
the root level of the resource file, click on the close box or choose the
Close command from the File Menu.

CREATING A DIALOG BOX

The dialog you will create in the following steps contains a text string,
a set of "radio buttons," and two exit buttons. In addition to
demonstrating more about setting attributes and sorting objects, this

2-7

Creating a Dialog Box GEM Resource Construction Set

part of the tutorial illustrates working with a three-level tree, where
one of the children of the root object has children of its own.

Choosing and Naming a DIALOG Object Tree Icon

The first step in creating a dialog box is the same one you took in
creating the menu: choosing and naming the object tree icon.

Drag the DIALOG object icon from the parts box and place it in the
view window. When GEM RCS displays the naming dialog, press the
Esc key to erase the default name (note that it is TREE2; the MENU
was TREE 1), type PTYDIAL, and click on the OK button or press the
Enter key.

Opening the Object Tree

To open your dialog box's object tree, double-click on the PTYDIAL
icon. Note the following changes to your screen:

• The name of your object tree, PTYDIAL, appears in the title bar at
the top of the view window.

• The view window is now empty.

• The icons in the parts box change, showing you the objects you can
include in your dialog box.

Choosing Objects for Your Dialog Box

To assemble the objects for your dialog box, do the following:

1. Drag the STRING object from the parts box, placing it in the upper
left of the view window.

2. Drag the hollow box object (see left) from the parts
box and place in the upper center of the view
window.

3. Click on the box to select it. Note the object's size handle
(mentioned under "Sizing Objects" in Section 1) at the lower right
corner of the extent.

2-8

GEM Resource Construction Set Creating a Dialog Box

4. Drag the box's size handle down a little and almost to the right
border of the view window, making a long, shallow rectangle.

5. Drag the BUTTON object from the parts box and place it inside the
box you just enlarged, in the upper left corner.

Customizing the STRING Object

Double-click on the STRING object in the view window. When GEM
RCS displays the Edit Unformatted String Object dialog, press the Esc
key to erase the text and then type the following:

Political party?
You don't need to do anything with the optional object name, so click
on the OK button or press the Enter key to complete your work, in the
Edit Unformatted String Object dialog. The STRING object in your
dialog box now contains the phrase you just typed. (Don't be
concerned if the message overlaps the box or BUTTON object. . We'll
reposition everything later.)

Customizing the BUTTON Object

To change the text inside the BUTTON object and to give it a name to
which you can refer in your program code, do the following:

1. Double-click on the button. GEM RCS displays the Edit Unformatted
String Object dialog. .

2. Press the Esc key to clear the existing text.

3. Type Democratic.

4. Click on the "Object Name" field. The text cursor moves to this line.
(You can also move the cursor by pressing the Tab key or the
down-arrow key.)

5. Type DEMBTN. (To make reading your code as easy as possible,
you should use object names that indicate the object's function.)

6. Click on the OK button or press the Enter key.

2-9

Creating a Dialog Box GEM Resource Construction Set

Setting a Radio Button

The "Democratic" button and two others (you'll create them in just a
moment) will make up a set of "radio buttons." Like the pushbuttons
on a car .radio, radio buttons have the following characteristics:

• In a set, only one button at a time can be selected, but there should
always be a selected button. There should never be a case where
no button is selected .

• Selecting a button automatically de-selects the previously selected
button in the set.

To set the button as a radio button, do the following:

1. Click on the "Democratic" button to select it.

2. Click on the attributes menu icon (see left) and
click on "Radio Button" in the pop-up menu that
appears.

Creating Additional Radio Buttons

This dialog has two additional radio buttons, "Republican" and
"Independent". To create these buttons, do the following:

1. Shift-drag the "Democratic" button twice, placing the two copies to
the right of the original.

2. Double-click on the copy immediately to the right of the original. In
the Edit Unformatted String Object dialog, change the text to
"Republican" and the object name to "REPBTN".

3. 'Double-click on the last copy. In the Edit Unformatted String Object
dialog, change the text to '1Independent" and the object name to
"INDBTN".

2-10

GEM Resource Construction Set Creating a Dialog Box

Designating the Selected Radio Button

When the dialog appears at run-time, one of the radio buttons must
be pre-selected (highlighted in reverse video). To pre-select the
"Democratic" button, do the following:

1. Click on the button to select it.
2. Click on the attributes menu icon and choose "Selected".

Customizing the Parent Box

Before you work on the parent box, you might want to know why you
need one in the first place.

When you have more than one set of radio buttons in a dialog, you
must enclose each set inside a parent box. If you don't, clicking on
one button will turn off !ill other radio buttons in the dialog, not just
the buttons in that one set.

In this dialog, with only a single set of radio buttons, you don't really
need a parent box, but the dialog could have additional sets labeled
"Age group?" and "Salary range?" This step will demonstrate what to
do when you do need the parent box.

First, arrange the radio buttons in the parent box. (The "Democratic"
button should be in the box's upper left corner.) Then select the
parent box (if it isn't already selected) and size it down as small as
you can make it.

You don't want the parent box to be visible in the final dialog. To
make it invisible, do the following:

1. Select the box, if it isn't already selected.
2. Click on the border width menu icon (see below).
3. In the border width pop-up menu, choose the null border. See the

illustration on the next page.

2-11

Creating a Dialog Box GEM Resource Construction Set

•
•
•

null border

If you de-select the parent box by clicking elsewhere in the view
window, you'll see that the parent is now invisible. However, you can
still select it by Ctrl-clicking on one of the radio buttons, and you can
move it (and the buttons too) by Ctrl-dragging any of the buttons.

Creating Exit Buttons

The dialog needs two "exit buttons" with which the end-user can exit
the dialog by clicking on either button.

To create the exit buttons, do the following:

1. Drag a BUTTON object from the parts box, placing it below the radio
buttons.

2. Shift-drag this BUTTON object, placing the copy just to the right of
\\the original.

3. Edit and set attributes for the first BUTTON as follows:

• Change its text to "OK".
• Name it OKBTN.
• Set its attributes to "Exit" and "Default".

Making a button the "default" means that at run-time the end-user
can select this button either by pressing the Enter key or by clicking

2-12

GEM Resource Construction Set Creating a Dialog Box

on it. (You've already encountered a default button in the Edit
Unformatted String Object dialog: the OK button.)

4. Now edit and set attributes for the second exit button as follows:

• Change its text to "Cancel".
• Name it CANCLBTN.
• Set its attribute to "Exit".

5. Finally, locate the exit buttons where you want them.

Resizing the Background of Your Dialog Box

Move the pointer to an open area of the view window (away from the
text and buttons) and click. The dialog box's size handle appears in
the bottom right corner of the view window.

Place the pointer on the size handle and drag !!Q and to the left. As
you drag, the background of your dialog box gets smaller. When the
background is the size you want, release the mouse button.

Sorting Objects in the Dialog

The last thing to do before closing this tree is to sort the objects in it.
The procedure is essentially the same as with the SAMPLE dialog.

Note: You must sort all levels (sets) of children. For example, this
dialog has two levels. The radio buttons are children of the empty
box, and the empty box, string, and exit buttons are children of the
dialog's outer box.

To sort the children in your dialog, do the following:

1. Ctrl-click on one of the radio buttons. This selects its parent box.

2. Display the Hierarchy Menu and choose the Sort Children ...
command. Click on the single-row option (on the far left) and press
the Enter key or click on the OK button.

3. Select the dialog's outer box.

4. Display the Hierarchy Menu and again choose the Sort Children ...
command. This time click on the double-row option (on the far
right) and press the Enter key or click on the OK button. '

2-13

Creating a Dialog Box GEM Resource Construction Set

Sorting the objects will draw them in the following order:

1. "Political party?" string.
2. Radio buttons, "Democratic" first.
3. OK button.
4. Cancel button.

Closing the DIALOG Object Tree

Your dialog is now complete. To close its object tree and return to
the root level of the resource file, click on the close box or choose the
Close command from the File Menu.

SAVING A RESOURCE FILE

Display the File Menu and choose the Save As ... command. The Item
Selector appears on your screen.

Type TEST and then click on the OK button or press the Enter key.
GEM RCS saves the following files:

TEST.RSC

TEST.DFN

The actual resource file you would include with your
application program. Note that you do not need to
type the .RSC file extension; GEM RCS automatically
supplies it.

An auxiliary file that identifies the trees and objects in
your resource file. When you work in GEM RCS, you
need both the resource file and its .DFN file in the
same directory.

If you have created resource files with GEM RCS, the
earlier version of the Resource Construction Set, the
definition file has the extension .DEF. To use this file
with GEM RCS, simply change its extension to .DFN.

In its initial default configuration, GEM RCS also creates TEST.H, a C
language include file you must use when you compile your application
program code. The.H file is an ASCII file that lists the trees and
objects in your resource file and the object numbers assigned to them

2-14

GEM Resource Construction Set Saving a Resource File

by GEM RCS. You can also read this file to check the order in which
objects have been sorted. Sorting is discussed in this tutorial and also
in the description of the Hierarchy Menu in Section 3.

Note: You can also produce include files for Pascal, BASIC, and
FORTRAN-77, as well as an editable ASCII version of your resource file
(the .RSH file). See the description of the Output... and Save
Preferences commands in the Global Menu (Section 3) and the
description of RSCREATE in Section 4.

QUITTING GEM ReS

To stop GEM RCS, choose the Quit command from the File Menu. You
then return to the GEM Desktop.

End of Section 2

2-15

~eCllon ~

GEM Res Reference

ASPECT RATIO AND SCREEN RESOLUTION

GEM applications can run under a variety of aspect ratios and screen
resolutions. The following table lists the three most common
combinations.

Table 3-1. Screen Resolution and Aspect Ratio

Resolution Pixel Ratio Aspect Ratio

low 640x200 3.2:1

high" 640x400 1.6:1

high" 720x350 2.06:1

" 1: 1 square any

" Although their aspect ratios are different, the GEM software uses the same screen

driver for these resolutions.

If an icon or bit image is displayed on a system with an aspect ratio
different from the system on which it was created, the icon or bit
image will appear taller or shorter than it appeared in the original.
This can cause problems if you are placing icons or bit images close
together; aspect ratio differences can cause them to overlap each
other or separate from each other.

You can resolve this issue in either of the following ways:

• You can create a single resource file and compensate for the
different aspect ratios of the systems on which you expect your
application to run.

3-1

Aspect Ratio and Screen Resolution GEM Resource Construction Set

• You can create different sets of icons and bit images for each
expected aspect ratio. You can then create aspect ratio-specific
resource files from a single "master" file by loading the appropriate
set of icons and bit images into each final version of the resource
file.

The following illustrations demonstrate these two approaches. On the
left, you see a partial view of the GEM RCS toolkit, which was created
only in a low-resolution version. Note how the bit images are
flattened on a high-resolution system. On the right, you see partial
views of the GEM Paint ™ toolkit, which exists in both high- and low
resolution versions.

GEM RCS
lo-res

GEM RCS
hi-res

GEM Paint
lo-res

II [==] TEXT

/

GEM Paint
hi-res

If you create aspect ratio-specific resource files, at run-time your
application can determine the screen's aspect ratio and resolution and
load the appropriate file.

For more on icons and bit images, see "Icons and Bit Images," later in
this section.

Note: Aspect ratio differences do not cause problems with text or any
other objects in a tree.

3-2

GEM Resource Construction Set File and Desk Menus

FILE AND DESK MENUS

As noted in the tutorial, when you open a MENU object tree, there are
already a File Menu and a Desk Menu in the menu bar.

File Menu

The File Menu is optional; you can drag its title to the trash can.

To add commands to the File Menu, do the following:

1. Click on the menu title. This selects the title and displays the menu
box with a single command, Quit.

2. Place the pointer at the lower right corner of the menu box, and
Ctrl-drag down and to the right. This makes the menu box larger,
without affecting the size or location of the command.

3. Drag the Quit command to the bottom of the menu box, or place it
wherever you want it.

From this point, you can create the menu just as you did in the
tutorial.

Desk Menu

This menu is required; you cannot drag its title to the trash. However,
at run-time its name and location can vary as follows:

• If your application is running under version 1.X of GEM AES, the
menu is called the Desk Menu and appears at the left side of the
menu bar .

• If your application is running under version 2.X of GEM AES, the
menu appears at the right side of the menu bar, and the menu's
name is the filename of the application's executable file. For
example, for an application executed by a file called BINGO.APP, it
would be the BINGO Menu.

The name variation and menu placement are handled entirely by the
GEM AES.

The Desk Menu contains several "placeholder" commands. The first--

3-3

File and Desk Menus GEM Resource Construction Set

Your message here--is fully editable (the message has a 20-character
maximum), but you cannot delete it. A typical function for this
command is to display an informational dialog about the application,
including its version number.

The numbers below the separator line are placeholders for desk
accessories. The menu can accomodate a maximum of six. You
cannot edit or delete these entries. GEM AES handles placing desk
accessory names in the menu and sizing the menu according to the
number of desk accessories it contains.

USING THE PARTS BOX

The parts box contains icons for the objects you can include in an
object tree. These objects have preassigned attributes (fill patterns,
colors, text strings, etc.) you can change with the tools in the toolkit.
You can edit text in an object or make other changes by double
clicking on the object to display one of a variety of dialogs.

To place an object in your current object tree, drag its icon from the
parts box to the view window.

The contents of the parts box depend on the type of tree you are
creating, as the following sections explain.

MENU Tree Objects

TITLE

ENTRY

D

3-4

Menu title for the menu bar.

Command string for the menu.

Separator line for the menu. Use the separator line
to separate commands into logical groups for the
end-user's convenience.

Hollow box you can place in a drop-down menu.
You can use the hollow box to define the selectable

GEM Resource Construction Set Using the Parts Box

(reversible) extent of a bit image in the menu. For
an example, see the Gallery Menu in the GEM
Graph ™ application.

DIALOG Tree and PANEL Tree Objects

The same set of objects is available for DIALOG and PANEL trees. In
the following descriptions, the names in parentheses are object types
described in Section 6, "Object Library," in the GEM AES Reference
Guide.

I BUTTON I

STRING

EDIT: __

IEDIT:

TEXT

I BOXTEXT I

(G_BUTTON) - Boxed string the end-user selects to
indicate a choice among alternatives .

. (G_STRING) - Boxless character string, normally
contailling explanatory text for the end-user.

(G_FTEXT) - A formatted text field the end-user can
change.

(G_FBOXTEXT) - A formatted text field inside a box.
The end-user can change the text field.

(G_IBOX) - Hollow box through which the end-user
can see the fill pattern or text beneath.

(G_BOX) - Opaque (non-transparent) box.

(G_TEXT) - Formatted text. You can select sizes,
colors, fonts, and masks for these objects.

(G_BOXCHAR) - Single character in an opaque box.

(G_BOXTEXT) Same as TEXT, but with a
surrounding, opaque box.

3-5

Using the Parts Box GEM Resource Construction Set

[ID)
IN ACE

(GJCON) - Use to display an icon (data plus mask)
created with GEM IconEdit.

(G_IMAGE) - Use to display a bit image (data field
only) created with GEM IconEdit.

ALERT Tree Objects

Alerts use an optional warning icon, up to five message lines, and up
to three exit buttons. The descriptions of the icons (below) also
suggest how each kind of alert might be used. This "philosophy" is
entirely optional.

I Button I

~11essage Line

?
•

3-6

The default state of an exit button in an ALERT is
set in your program code.

An unformatted text string telling the end-user the
nature of the problem. An alert can have a
maximum of five message lines, each with no more
than forty characters.

NOTE icon. This is the default icon. This kind of
alert can inform the end-user that he has attempted
something the application does not permit. The
alert might only have an OK exit button, so the user
can acknowledge the message.

WAIT icon. This kind of alert can inform the end
user that he has requested a permitted action, but
that the action is not possible under the present
circumstances, perhaps because a drive door is
open or there is no disk in the drive. The message
text can suggest solutions. The alert would have
two exit buttons, Cancel and Retry.

GEM Resource Construction Set Using the Parts Bo~

I
STOP icon. This kind of alert can warn the end
user that his request, while perfectly legal, can
result in the loss of data. Formatting a disk is one
example. The alert would have two exit buttons, OK
and Cancel.

FREE Tree Objects

Free-string

([0]
FREE

OBJECT CLASSES

An unformatted text string containing the text you
wish to display.

A bit image (data field only) created with GEM
IconEdit.

The objects in the parts box can be divided into five classes:

• unformatted strings
• box type
• formatted text
• bit images
• icons

The following table lists the object classes, the object types in each
class, and the object trees in which they can appear.

3-7

Object Classes GEM Resource Construction Set

Table 3-2. Object Classes

Object Class Object Type Object Tree(s)*

Unformatted String TITLE M
ENTRY M
separator line M
BUTTON D,P,A
STRING D,P
Message Line A
Free-string F

Box Type all boxes, including outer M,D,P
box of DIALOG or PANEL
single character in box D,P

Formatted Text TEXT D,P
BOXTEXT D,P
editable text (EDIT: __) D,P
boxed editable text D,P

Bit Images IMAGE D,P,F

ICON D,P

* M = MENU, D = DIALOG, P = PANEL, A = ALERT, F = FREE

Unformatted Strings and Formatted Text

GEM RCS provides two ways of entering text in object trees:
unformatted strings and formatted text. The following table lists some
of the characteristics of and differences between these two kinds of
text.

3-8

GEM Resource Construction Set Object Classes

Table 3-3. Unformatted Strings and Formatted Text

Unformatted Strings

Formatted Text

ADDING OBJECTS TO TREES

Attributes can be set.

Can be aligned within parent.

System font and color only.

Transparent mode only (background
color and pattern show through).

Always left-aligned in extent.

Attributes can be set.

Can be aligned within parent.

Colored text available.

Small font available.

Transparent mode or replace mode
(background color and pattern do not
show through).

Text can be left-aligned, right-aligned,
or centered within extent. .

Outline color available (boxed formatted
text only).

Outline thickness available (boxed
formatted text only).

To add an object to your tree, drag its icon from the parts box to the
view window. You can then Shift-drag the object in the view window
to make additional copies.

3-9

Adding Objects to Trees GEM Resource Construction Set

The Shift-drag technique is especially useful if you want two or more
objects with the same attributes. For example, if you want three
buttons with attributes in common, drag one BUTTON object from the
parts box, set the common attributes, and then copy it twice, rather
than dragging the object from the parts box three times and setting
the attributes three times.

Special Cases

MENU trees

ALERT trees

The TITLE object can be placed only in the title
bar. The ENTRY, separator line, and hollow box
objects can only be placed in the menu box.

You cannot add or remove objects from the
Desk Menu. The first line of the Desk Menu is
the only editable entry . .
An ALERT tree can only contain one warning
icon. To replace the default NOTE icon, drag
another icon from the parts box and place it
inside the alert. GEM RCS automatically deletes
the NOTE icon and positions the new icon. If
you don't want an icon, drag the existing one to
the trash can.

An ALERT can have a maximum of three exit
buttons and five message lines of no more than
forty characters each. GEM RCS automatically
adjusts the size of the alert box to the length of
the message text.

MOVING, COPYING, AND DELETING OBJECTS

Moving and copying objects are described in Table 1-1. Also see
"Using the Clipboard," later in this section.

To delete an object, do one of the following:

• Drag it to the trash can.
• Select the object and click on the trash can icon.
• Select the object and choose the Delete command from the Edit

Menu.

3-10

GEM Resource Construction Set Sizing Objects

SIZING OBJECTS

You can size most objects by selecting the object and then dragging
its size handle.

Some objects--including STRING objects and others whose contents
you edit in the Edit Unformatted String Object dialog--change size
automatically when you add to the text in the object. However, such a
change might violate the parent-child size relationship, which is
described next.

MAINTAINING THE PARENT-CHILD SIZE RELATIONSHIP

As detailed in Section 6 of the GEM AES Reference Guide, object
structure rules require that the parent object always contain its
children. This means that the child cannot be larger than its parent
and that the child cannot extend past the boundaries of the parent.

In several cases, GEM RCS protects against violations of the parent
child size relationship. For example, you cannot size down a menu
box so that the entries or separator lines extend past the edge of the
box. Similarly, you cannot enlarge a BUnON object to extend past the
edge of a dialog box.

However, by editing text strings in the Edit Unformatted String Object
dialog, you can make the following objects too long to fit inside their
parent objects:

• a STRING in a dialog or panel
• an ENTRY object in a menu box

For example, you can type text into an ENTRY so that the command
extends past the edge of the menu box. In this case, GEM RCS
displays an alert warning you that the child does not fit inside its
parent. You have two options:

3-11

Parent-Child Size Relationship GEM Resource Construction Set

OK

Cancel

GEM RCS accepts the long ENTRY and automatically
enlarges the text string's extent to include the entire
string. You should then make the menu box larger. (If
you don't, be forewarned that GEM AES only writes to
the menu/alert buffer and redraws the part of the screen
under the menu box. Anything outside the menu box
will remain on the screen as garbage.)

GEM RCS ignores your changes and retains the original
ENTRY text.

ICONS AND BIT IMAGES

Icons and bit images are both created with GEM Icon Edit.

An icon consists of DATA (the "picture") and MASK, usually a solid
"shadow" of the DATA. The function of the MASK is to prevent any
background colors or patterns from showing through the DATA. You
can edit an icon to include a text string or a single character at any of
several positions relative to the icon. See the description of the Edit
Icon Object Dialog, later in this section.

A bit image is DATA only. Because it has no MASK, the bit image
allows any background color or pattern to show through. Unlike icons,
bit images cannot be edited to include text strings or characters.

Loading Icons

To load an icon into a DIALOG or PANEL tree, drag the ICON icon from
the parts box to the view window. Then select the icon and choose
the Load... command from the Options Menu.

GEM ReS first displays a dialog asking if you want to load the icon's
DATA, MASK, or both. If you load DATA only, any background color or
pattern will show through the icon. If you load MASK only, you will
simply block out any background color or pattern, but the icon's image
will not appear.

If you choose both DATA and MASK, GEM RCS displays the Item
Selector twice. The first time, select the icon's DATA. When GEM RCS
immediately redisplays the Item Selector, select the icon's MASK.

3-12

GEM Resource Construction Set Icons and Bit Images

Note: The files for DATA and MASK both have the extension .ICN.
You'll need some naming convention to distinguish the two, like
ICONQ.lCN and ICONM.lCN.

Loading Bit Images

To load a bit image into a DIALOG or PANEL tree, drag the IMAGE icon
from the parts box to the view window. Then select the icon and
choose the Load... command from the Options Menu. GEM RCS
displays the Item Selector, and you can select the bit image file.

like icons, bit image files have the .ICN extension.

USING FREE TREES

As noted in Section 1, FREE trees can be used to enable context
sensitivity in your application at run-time. We'll use GEM RCS as an
example of how you can use Free-string objects and FREE images.

Note: You can assemble your Free-strings and FREE images in as
many FREE trees as you like, mixing and matching as the spirit moves
you. However, when GEM RCS saves the resource file, it combines all
Free-strings into one tree (called FRSTR1) and all FREE images into
another tree (called FRIMG 1).

Free-String Objects

The GEM RCS resource file contains several strings in the tree FRSTR1,
including the following commands:

• Hide Parts
• Show Parts

The default form of this command (Hide Parts) is contained- in the tree
for GEM RCS's menus. When the end-user chooses the command, the
application changes the pointer for the command string from the
default in the MENU tree to the alternate (toggled) command in the
FRSTRl tree. The next time the GEM AES screen manager draws the
menu, it uses Show Parts from FRSTR 1. From then on, as context
requires, the application swaps in and out the pointers to the two
forms of the command in FRSTR 1.

3-13

Using FREE Trees GEM Resource Construction Set

Note: If you change the length or spacing of the string in the tree
containing the default, don't forget to make the same changes to the
related free-string or strings.

FREE Image Objects

The GEM RCS clipboard (described later in this section) is a context
sensitive object. Its default appearance is a bit image object in the
toolkit's object tree. The tree FRIMG 1 contains its alternate
appearance (dog eared, to indicate that the end-user has placed
something on the clipboard) and a duplicate of the default version.

When the end-user places something on the Clipboard, GEM RCS
swaps in the dogeared bit image from FRIMG1. The next time the
default version is needed, GEM RCS uses the duplicate from FRIMG 1,
and from then on GEM RCS swaps in and out the two versions from
FRIMG1.

USING THE OBJECT EDITING DIALOGS

When you open an object in the view window, GEM RCS displays one
of the following dialogs:

• Edit Unformatted String Object
• Edit Box Type Object
• Edit Formatted Text Object
• Edit Bit Image Object
• Edit Icon Object

The dialog displayed depends on the class of object opened (see Table
3-2).

Each object editing dialog is different (see the individual descriptions
following), but in each case you can use the dialog to name or rename
the object you're working on. To do so, click on the line following
"Object Name" and type the name you want to assign to the object.
You can then refer to this name in your program code.

3-14

GEM Resource Construction Set Using the Object Editing Dialogs

Edit Unformatted String Object Dialog

The default text, BUTTON or STRING, appears in the "Text" field. To
edit the field, press the Esc key to erase the text in the field and then
type the new text. You can move the cursor back and forth in the
field with the left- and right-arrow keys, and you can erase characters
with the Backspace and Delete keys.

To help you gauge the length of your text strings, the dialog marks
the "Text" field at 20, 30, and 40 characters.

See "Unformatted Strings and Formatted Text," earlier in this section,
for a discussion of the differences between unformatted and formatted
text.

Edit Box Type Object Dialog

If the object is the single character in a box (object type G_BOXCHAR),
the "Character" field contains the default character. You can edit or
erase this character as you wish. For all other box objects, the
"Character" field is empty, and GEM RCS ignores any characters you
enter in it.

Edit Formatted Text Object Dialog

The Edit Formatted Text Object dialog exists in two forms: one for
editable text (G_FTEXT and G_FBOXTEXT objects) and another for non
editable text (G_TEXT and G_BOXTEXT objects). The ob_spec value of
all four object types is a POINTER to a TEDINFO structure (see Section
6 of the GEM AES Reference Guide).

See "Unformatted Strings and Formatted Text," earlier in this section,
for a discussion of the differences between unformatted and formatted
text.

The dialog for non-editable formatted text has only one field, PTEXT, in
which you enter text.

The dialog for editable formatted text has three fields: PTMPLT
(template), PVALID (validation), and PTEXT (text entry). These fields are
explained at length in Section 6 of the GEM AES Reference Guide
under "TEDINFO Structure." Note that in GEM RCS, PTMPL T, PVALlD,
and PTEXT use a tilde (-) in place of an underline (J to avoid

3-15

Using the Object Editing Dialogs GEM Resource Construction Set

confusion between the field itself and the placeholders for editable
characters.

The following example illustrates how PTMPl T, PVAlID, and PTEXT
create an editable text field in which the end-user can type the date.

PTMPLT>Today's date: ~~/--/~-___________________________ ___
PVALID>~------~---~--~99-99~99 ____________________________ __
PTEXT>~~-~~-~~-~-~-~-Ol-Ol-86 __________________________ ___

PTMPL T: To edit the field, press the Esc key and then type the new
string as shown above. The tildes take the place of the characters the
end-user can edit at run-time.

PVALlD: The validation field controls the location and type of the
characters the end-user enters at run-time. A "9" in PVALID indicates
that the end-user may only enter a digit (0-9) in that position. Tildes
in PVALID represent literal characters that must appear exactly as
entered in PTMPl T.

PTEXT: The digits under the nines in the validation field appear as the
default entry for the field. The end-user can type over them to
change the date.

Edit Bit Image Object Dialog

This dialog contains only the "Object Name" field and a reminder to
use the Load ... command (Options Menu) to load the new bit image
data. "loading Bit Images," earlier in this section, describes how you
load bit images.

Edit Icon Object Dialog

In addition to naming the object, you can use this dialog for the
following:

• To enter and locate a text string you want to appear as part of the
icon .

• To enter and locate a single character you want to appear as part of
the icon.

The dialog contains two locator boxes: one for the Text field and

3-16

GEM Resource Construction Set Using the Object Editing Dialogs

another for the Character field. You can locate a text string at the top,
middle, or bottom of the icon. You can locate a character at any of
nine positions relative to the icon.

See "Loading Icons," earlier in this section, for a description of how
you load an icon.

USING THE CLIPBOARD

The clipboard is a storage place for trees or objects
from the view window. You can move or copy items
to the clipboard, but only one item can be on the
clipboard at a time. Moving or copying overwrites
anything currently on the clipboard.

When you place an item on the clipboard, GEM RCS
dog.;..ears the icon to let you know there is something
there.

To cut a tree or object to the clipboard, do one of the following:

• Drag its icon to the clipboard.
• Select the tree or object and then click on the clipboard icon.
• Select the tree or object and then choose the Cut command from

the Edit Menu.

Cutting removes the tree or object from the view window.

To ~ a tree or object to the clipboard, Shift-drag its icon, or select
the tree or object and use the Copy command on the Edit Menu.
Copying leaves the original icon in the view window.

To paste a tree or object from the clipboard to the view window, do
either of the following:

• Drag from the clipboard icon.

• Display the Edit Menu, press the mouse button when the Paste
command is highlighted, and drag from the menu. Use this
technique if you have removed the toolkit from the screen with the
Hide Tools command.

Either technique empties the clipboard.

3-17

Using the Clipboard GEM Resource Construction Set

To copy a tree or object back to the view window, Shift-drag the
clipboard icon. The clipboard still contains the original tree or object.

Whenever you paste or copy a tree from the clipboard, GEM ReS
displays the "Enter Tree Name" dialog so you can give it a unique
name.

You can use the clipboard as a holding place for an object from the
parts box of one tree type and then add the object to another tree.
For example, you can add bit images to a MENU tree by doing the
following:

1. Open a DIALOG tree.

2. Put a bit image in the DIALOG tree's view window and then cut or
copy it to the clipboard.

3. Close the DIALOG tree and open a MENU tree.

4. Paste or copy the bit image from the clipboard into a menu. You
might want to make the bit image the child of a hollow box. See
the description of the hollow box under "MENU Tree Objects," earlier
in this section.

Note: Be careful when you mix and match objects this way. Some
objects and trees are incompatible, and mixing them can cause
unpredictable results. See "Unknown Object Tree Types" in Section 4.

GEM RCS clears the clipboard when you choose the New command to
begin a new resource file and when you choose the Open ... command
to edit an existing resource file. Both commands are on the File Menu.

USING THE TOOLKIT

The toolkit contains tools with which you can make a variety of
changes to a selected object, include the following:

• changing the object's color
• changing the object's fill pattern
• aligning the object within its parent
• setting certain attributes for the object
• changing the object's line thickness

3-18

GEM Resource Construction Set Using the Toolkit

A tool is disabled if its effect is not meaningful for the selected object.
For example, the fill pattern tool is disabled for STRING objects
because STRING objects cannot have a fill pattern.

When you move the pOinter over the toolkit, GEM RCS highlights only
the tools enabled for the currently selected object. To use a tool, click
on the highlighted icon. GEM ReS displays a pop-up menu of the
tool's options.

To choose from a pop-up menu, drag through the menu and click
when the option or command you want is highlighted. If you click
outside the menu, it disappears, and the object is unaffected.

Descriptions of the Tools

Selects a background color for an object. The menu
appears in color if your computer can display color.
Otherwise, assign colors using the numbered color
codes. These correspond to the codes described under
"Object Colors" in Section 6 of the GEM AES Reference
Guide.

Selects a fill pattern for an object.

Note: For a fill pattern to be visible, it must also have a
visible color. The defaults are white color and
transparent fill pattern.

Selects a color for a TEXT, BOXTEXT, FTEXT, or
FBOXTEXT object. The menu appears in color if your
computer can display color.

Aligns text, changes text size, or changes the
background. For· TEXT, BOXTEXT, FTEXT, and FBOXTEXT
objects only. Most of the commands are self-
explanatory; explanations and an illustration of
Transparent and Replace follow.

3-19

Using the Toolkit GEM Resource Construction Set

••••••••••• '.,1 •••••••• 11 ••••• ,1,., ••••••••• " ••••• ,1 •• 1' •••••••• , •••••••• " ••
•••••• " •••••••••• 1', •• , •••••••••••••• 11 •• 1", •••••••••••••••••• " •••••••••• , ••
""""1"1,,1"'11111"""111111""1111,"111"'11111"""111111111111111
111111""'111111""111111""'1,"111""""11"'" ••• 111, •••••• ",., ••••• ,.

:::::::::::l·.'·~·.'·~·.'·~··~··~·.'·p·.'·~·.':~·.'·£·.'·~·.'.'r..'.::::~··:·O·.'·O·.'·£····::::::::::::::::::::~····!·.'·p·.'·[··:·~·.'·~! .. ·-:·:·t··1:·0·.'·O·.'·E·.'·::::::::::::::
""" , " d """.... I

}({\:::::::{:::::::\::::::::::}~:)tt:::::::{ttttt;;;:;:;:;:;:;:;:;::L:;:::;:;:;:;;;:::::{ttt

Transparent' - Makes each character cell (the text's immediate
background) transparent; the color and fill pattern of the box
containing the text shows through.

Replace - Makes each character cell opaque; the text appears on a
solid white background.

Aligns or resizes an object within the boundaries of its
parent. The alignment options are self-explanatory;
explanations of the fill and snap options follow.

Fill Horizontal - Automatically resizes the object so that it extends
from the extreme left to the extreme right boundaries of the parent
object.

Fill Vertical - Automatically resizes the object so that it extends from
the top to the bottom boundaries of the parent object.

Character Snap - Snaps the selected object in a PANEL tree to the
nearest character boundary. This is useful for precise alignment of
objects in the PANEL, which otherwise allows free placement of
objects.

3-20

Selects attributes for an object. GEM RCS places a
marker next to any attribute assigned to the current
object. The attributes in the upper half of the menu set
object flags (ob_flag) and affect the object'S interaction
with the FORM_DO call. The attributes in the lower half
of the menu set object states (ob_state) and affect how
the Object library draws the object. See Section 6,
"Object library," and Section 7, "Form library," in the
GEM AES Reference Guide.

GEM Resource Construction Set Using the Toolkit

Explanations of the attributes follow.

Selectable - The end-user can select the object by clicking on it.
Clicking displays the object in reverse video.

Exit - Clicking on the object fulfills an exit condition and causes
FORM_DO to finish processing and return a value. Typically assigned
to the exit buttons in a dialog. Objects with the Exit attribute must
also have the Selectable attribute. They can also have the Default
attribute, but that is optional.

Default - The object is selected automatically when the end-user
presses the Enter key at run-time. If you designate more than one
object in a tree as the default, you won't receive an error, but your
results are not predictable.

Note: The Exit and Default attributes each add a pixel to all sides of
the border of a BUTTON object. Thus, a button with only the Exit
attribute has a two-pixel border, and a button with both attributes has
a three-pixel border.

Radio Button - Makes the object a member of a set of "radio
buttons." Radio buttons are like the buttons on a car radio; pressing
one button makes another one pop out, which means the end-user
can only select one radio button at a time. Members of a set of radio
buttons must be nested at the same level within a common parent
object.

Touchexit - Pressing the mouse button while the pOinter is on the
object fulfills an exit condition and causes FORM_DO to finish
processing and return a value. The application does not wait for the
mouse button to come up. Objects with the Touchexit attribute must
not have the Selectable attribute.

Editable - The end-user can change information in the object at run
time. Use only with editable text objects.

Hidden - Hides the object so that it is not displayed on the screen.
Use the Unhide Children command on the Hierarchy Menu to display
hidden objects.

Shadowed - Draws a drop shadow around the object (usually a box).
Shadows and outlines (see below) conflict.

Checked - Draws a triangle inside the left margin of the object.

3-21

Using the Toolkit GEM Resource Construction Set

Outline - Draws an outline around a boxed object. Outlines conflict
with shadows and have no effect on boxes with outward borders.

Crossed - Draws an X through the object in the system background
color. Use only with boxed objects.

Disabled - Draws the object at half-intensity (gray). The end-user
cannot select a disabled object.

Selected - The object is preselected (appears in reverse video) when
the end-user sees the tree.

3-22

Selects a color for the border around a boxed object.
The menu appears in color if your computer can display
color.

Selects a border thickness for any boxed object but a
BUTTON. The default thickness is a single pixel around
the outside of the object (the bottom of the left column
in the menu). The left column also provides two- and
three-pixel thicknesses outside the object. The right
column provides one-, two, and three-pixel thicknesses
inside the object. The option in the lower center of the
menu is the null (invisible) border. The fill patterns in
the pop-up menu are for illustration only and do not
affect the fill pattern in the object. See the illustration in
Section 2.

GEM Resource Construction Set GEM RCS Menu Commands

GEM RCS MENU COMMANDS

Note: Commands are disabled (dimmed) when choosing them is not
meaningful in the present context of GEM RCS. For example, the Edit
Menu commands (Cut, Copy, Paste, and Delete) are disabled when no
tree or object is selected.

e\~
Open •••
t'ierge •••

@@@@@@@@@@@@@@@@

Clos,e AC
Save AU
Save As • • • At~
Abandon AA

New

Open ...

Mer-ge ...

Clears the view window so you can start a new
resource fi Ie.

At the root level only, and with no tree icon
selected, displays the Item Selector so you can
open an existing resource file.

If you have a tree or object currently selected in the
view window, this command opens that tree or
object.

Displays the Item Selector so you can select an
existing resource file to merge with the one on
which you are working.

Merging resource files can produce name conflicts.
If the merged file contains names already used in
the current file, GEM RCS creates new names for
the duplicates. (Printing the .H or .I file is a good
way to check for duplicates--see the Output ...
command in the Global Menu.)

3-23

GEM RCS Menu Commands GEM Resource Construction Set

Close

Save

Save As ...

Abandon

Quit

Closes the current resource file or tree. Closing a
file clears it from the screen. (If you have not
saved your current edits, GEM RCS displays a dialog
asking whether to save or abandon them. See the
note below.) Closing a tree returns you to the root
level of the file. Clicking on the close box has the
same effect as choosing this command.

Saves your current resource file. The file remains in
your workspace so you can continue editing. Use
this command periodically so you won't lose all of
your work to a power failure or computer
malfunction.

Saves your current resource file under a name you
provide. Use this command in either of the
following situations:

• To name and save a resource file for the first
time .

• To save an edited version of an existing file under
a new name and/or to a different directory. The
new directory path and/or filename appear in the
title bar. The original version of the file remains
on disk under the old name.

Abandons all edits on the current file since the last
time it was saved.

Stops GEM RCS and returns you to the GEM
Desktop.

Note: If you edit a new or existing resource file and then choose the
New, Open ... , Close, Abandon, or Quit command without first saving
your edits, GEM RCS displays a dialog that asks if you want to
abandon your edits. The dialog's three exit buttons offer you these
options:

• Abandon the edits.
• Save the file.
• Cancel the requested command.

3-24

GEM Resource Construction Set GEM RCS Menu Commands

utput ...
Protection ...
Save Preferences

@@@@@@@@@@@@@@@@@@@@@@@@

Hide Parts +P
Hide Tools +H

Output ...

Protection ...

Selects the types of output files (in addition to the
.RSC and .DFN files) GEM RCS creates when you
save resource files. You can select include files for
C (the default), Pascal, BASIC, and FORTRAN-77, as
well as a .RSH source file for use with RSCREATE
(see Section 4).

Sets the level of protection GEM RCS applies while
you are editing resource files. This command has
the following options:

• LOCKED - Permits editing and sizing but forbids
changes to the tree structure. This setting is
intended for post-production changes, such as
translating strings for internationalization of your
program. Values associated with tree and object
names are preserved; you need not recompile the
application after editing.

• NORMAL - The default protection level. It warns
you before rearranging trees. NORMAL permits all
operations but warns you of impending changes
in parent-child relationships and workspace
clearance.

• EXPERT -Gives you no warnings. You can make
whatever changes you wish to the resource file.

3-25

GEM RCS Menu Commands GEM Resource Construction Set

Save Preferences Makes the settings and selections in the output and
protection dialogs the defaults for subsequent GEM
RCS sessions; saves them to a file called RCS.lNF in
the GEMAPPS foider. To restore the original
defaults, delete RCS.lNF.

Hide Parts

Hide Tools

3-26

Hides the parts box on your screen. The command
toggles between Hide Parts and Show Parts.

Hides the toolkit on your screen. The command
toggles between Hide Tools and Show Tools.

GEM Resource Construction Set GEM RCS Menu Commands

**«>HIHIHIHIHIHlHIHIHIHioHlio

Delete +0

Cut

Copy

Paste

Delete

Cuts the currently selected tree or object to the
clipboard. The original no longer appears in view
window.

Copies the currently selected tree or object to the
clipboard. The original remains in view window.

Lets you move a tree or object from the clipboard
to the view window by dragging from the Edit
Menu. (Use when toolkit is not visible.)

Deletes the selected tree, object, or group of
objects.

3-27

GEM RCS Menu Commands GEM Resource Construction Set

n
NaMe •• I

Type •••
Load •••

Info ...

Name ...

Type ...

Load ...

3-28

+N
+T
+L

Shows you information about the current file or the
currently selected tree or object. Also shows how
much of your workspace you have used and how
much you still have available.

Displays a dialog you can use to name or rename
an object tree.

Displays a dialog you can use to change a tree or
object's type.

Displays the Item Selector so you can replace an
IMAGE or ICON object with one created using GEM
IconEdit.

GEM Resource Construction Set GEM RCS Menu Commands

+u
@@@@@@@@@*@@@*****@***@~

ReMOVe Parent

Sort Children... Displays a dialog in which you can specify how
objects should be sorted within their parent.
Sorting causes the objects in the tree to be drawn
in a logical order. Without sorting, the objects in
the tree are drawn in the order in which they were
added to it. This has no effect on the functionality
of the tree, but it can be visually displeasing,

Unhide Children Causes any hidden children of the currently selected
object to be displayed.

Remove Parent Removes the currently selected object without
removing its children. (Dragging an object to the
trash also removes its children.)

Note: Resorting children after your application has been compiled can
renumber the objects in your tree, causing any references to them in
the program code to be incorrect. (You can check this by looking at
the .H file created by GEM RCS.) If incorrect references exist, the
program code must be recompiled.

3-29

GEM Res Menu Commands GEM Resource Construction Set

Desk Accessory
Desk Accessory
Desk Accessory
Desk Accessory
Desk Accessory
Desk Accesso

About GEM Res ... Displays a dialog showing information about GEM
RCS, including the version number, copyright, and
authors' names. .

Desk accessories Names of desk accessories currently available on
your system. The menu can display up to· six desk
accessory names.

KEYSTROKE EQUIVALENTS OF MENU COMMANDS

Most of the GEM RCS commands can be executed by clicking on the
command in the menu or by typing a keystroke combination. The
following table lists the commands in the order they appear in the
menus and gives their keystroke equivalents.

Note: A command's keystroke equivalent is only enabled if the
command itself is enabled.

3-30

GEM Resource Construction Set Keystroke Equivalents

Table 3-4. Keystroke Equivalents of Menu Commands

Keystroke
Command Equivalent Menu

New Ctrl-W File
Open ... Ctrl-O File
Merge ... Ctrl-N File
Close Ctrl-C File
Save Ctrl-V File
Save as ... Ctrl-M File
Abandon Ctrl-A File
Quit Ctrl-Q File

Output ... Alt-O Global
Protection ... Alt-S Global
Save Preferences Alt-R Global
Hide/Show Parts Alt-P Global
Hide/Show Tools Alt-H Global

Cut Alt-C Edit
Copy Alt-Y Edit
Paste Alt-A Edit
Delete Alt-D Edit

Info ... Alt-I Options
Name ... Alt-N Options
Type ... Alt-T Options
Load ... Alt-L Options

Sort Children ... Alt-F Hierarchy
Unhide Children Alt-U Hierarchy

End of Section 3

3-31

RSCREA TE and Other
Technical Information

USING RSCREATE

~ectlon 4

RSCREATE is a C language utility program that creates a resource file.
It is primarily intended for two purposes:

• To create a resource file from a hand-edited file .
• To port resource files between microprocessor environments.

RSCREATE uses a .RSH file (described next) as an include file. To
generate a new .RSC file with RSCREATE, include the .RSH file in
RSCREATE.C and compile, link, and run RSCREATE .

. RSH File

The .RSH file, which is an ASCII file you can edit with a text editor or
word processor, is one of the optional GEM RCS output files. To make
GEM RCS create a .RSH file, choose the Output ... command from the
Global Menu, and click on the box labeled "*.RSH" in the output file
dialog. You can make the .RSH file one of the default set by choosing
the Save Preferences command from the Global Menu. See the
description of the Global Menu in Section 3.

GEM RCS only produces output files as part of the process of saving a
resource file. For that reason, if you open a resource file solely to
produce a .RSH file (in other words, without editing the file), you must
use the Save As ... command and then enter the file's current name in
the Item Selector. Because the resource file has not been edited,
closing the file with the Close command or the close box does not
save the file and does not create a .RSH file.

4-1

Using RSCREATE GEM Resource Construction Set

Hand-Edited Resource Files

To hand-edit a resource file, generate a .RSH file and make your
changes in the .RSH file with a word processor or text editor. Before
you hand-edit a resource file, however, be sure you are familiar with
the material in the GEM AES Reference Guide describing the Object
Library and the Form library.

When you hand-edit a .RSH file, remember the following:

• When adding a new object, TEDINFO, etc., insert it at the end of the
current entries.

• If you insert new objects into existing trees, update the tree base
definitions.

• GEM RCS expects object trees in the following order: root first,
followed by its children, left to right, with the rule applied
recursively. Make sure you enter any hand-built trees in this same
order.

• If you are creating a resource file with GEM RCS and you expect to
hand-edit the file later, don't enter any object names while you're in
GEM RCS. Wait until you've edited the .RSH file and have run it
through RSCREATE. Then read the new .RSC file back into GEM RCS
and enter the object names.

If you enter object names in your first pass through GEM RCS, the
.H and .DFN files are linked to the object numbers assigned in that
first pass. RSCREATE changes these object numbers, and GEM RCS
will not be able to use the .DFN file for any subsequent work on the
resource file .

• GEM RCS automatically sets the LASTOB flag in the OBJECT
structure of the last object in each tree. (See the descriptions of
the OBJECT structure and object flags in Section 6 of the GEM AES
Reference Guide.) If you hand-edit a tree, make sure this flag is set
for the last object in the tree. If you don't, your application can
crash at run-time.

4-2

GEM Resource Construction Set Using RSCREATE

Porting Resource Files

To port a resource file from one environment to another, do the
following:

1. Move the .RSH file to the new environment.

2. Add a header to make the .RSH file compatible with the target
environment. If you are porting to a 68K environment, the header is
commented out in RSCREATE.

3. Enter the target-format .RSH as an include file in RSCREATE.

4. Compile, link, and execute RSCREATE on the target environment.

Compiler Notes

Compile RSCREATE with Lattice ™ C or another full language
implementation.

Some C compilers (including Lattice C) fold duplicate strings together
when you compile RSCREATE. This can present problems at run-time
if the strings are to be edited. In that case, run the resource file
through GEM RCS agail1 to resolve the duplicate strings.

CHAINING RESOURCES

The GEM AES enforces an absolute limit of 64K for a· resource file. If
you need a larger resource, you can chain two resource files together.
However, to use the second file in the chain, you must first clear from
the AES any references to the first resource file, and you must clear
the first file from memory by making a RSRC_FREE call before you load
the second file.

UNKNOWN OBJECT TREE TYPES

If you load a resource file and do not have its .DFN file, GEM RCS
displays each tree as an UNKNOWN (represented by a question mark)
or an ALERT. Before you can work on the file, you must convert the
unknown trees to one of the known types. You should also give each
tree a name for the .DFN file you will create when you save the file.

4-3

Unknown Object Tree Types GEM Resource Construction Set

To assign types and names to the trees, do the following:

1. Click on the first UNKNOWN (TREE1) to select it.

2. Display the Options Menu, choose the Type ... command, and select
the DIALOG option. This replaces the question mark icon with the
DIALOG icon.

3. Double-click on the TREE 1 icon. This opens the tree, and you can
then see what it is.

If the tree really is a dialog, do the following:

1. Close the tree to return to the root level.
2. Choose the Name ... command from the Options Menu.
3. Give the tree a name.

If the tree is not a dialog, do the following:

1. Close the tree to return to the root level.
2. Choose the Type ... command from the Options Menu.
3. Select the correct type for the tree.
4. Choose the Name ... command from the Options Menu.
5. Give the tree a name.

For the ALERT trees, you need only open them to see what their
messages are and then use the Name ... command to give them names.

Using the Type ... command from the Options Menu, you can change
the type designation of any tree or object. Remember that MENU and
ALERT trees are quite restrictive; they accept only specific objects that
are for the most part not compatible with other object trees. You can
change a tree's type from a restrictive type to a less restrictive type
(for example, from ALERT to DIALOG), but you should not try to go
from less restrictive to more restrictive. To do so can produce
unpredictable results.

ARRANGING AND ALIGNING OBJECTS

Especially in a dialog, you might want to have several objects arranged
in a particular way. For example, you might want three or four text
strings to appear in a right-aligned column. To do this, you can first
arrange them inside a box, as follows:

4-4

GEM Resource Construction Set Arranging and Aligning Objects

1. Drag a box from the parts box to the view window. Make the box
the size you want.

2. Add the STRING objects to the box and edit them.

3. Select all of the strings in the box using the Shift-click technique.

4. Display the alignment pop-up menu and choose the alignment you
want. (As long as the strings are inside their parent box, you can
also move them as a group.)

5. Select the parent box and then choose the Remove Parent
command from the Hierarchy Menu. Removing the parent box
reduces the size of both the tree and the resource file.

CREATING A LIBRARY FILE

If you use certain icons, bit images, or subtrees frequently, you can
collect them in a "library" resource file. Using the Merge ... command
(File Menu), you can read this library file into your current resource
file. You can then use the trash can or clipboard to cut any
extraneous objects from the resource file.

End of Section 4

4-5

Index

.DEF file
changing to .DFN, 2-14

.DFN file, 2-14

.H file, 2-15, 3-29

.lCN file extension, 3-13

.RSC file, 2-14

.RSC file extension, 1-5

.RSH file, 2-15, 4-1

A

Abandon command, 3-24
About GEM RCS ... command,

3-30
Adding object to trees, 3-9
ALERT trees, 1-3, 3-6, 3-10, 4-4
Alerts .

format, 1-3
Alignment menu, 2-6
Alt key

symbol in menus, 2-5
Aspect ratio, 3-1
Attributes

Checked, 3-21
Crossed, 3-22
Default, 2-12, 3-21
Disabled, 3-22
Editable, 3-21
Exit, 2-12, 3-21
Hidden, 3-21
Outline, 3-21

Radio Button, 2-10, 3-21
Selectable, 3-21
Selected, 2-11, 3-22
Shadowed, 3-21
Touchexit, 3-21

Attributes menu, 2-10, 3-20

B

Bit image objects, 3-16
aspect ratio differences, 3-1
loading, 3-13

Box type objects, 3-15

C

Character snap, 1-3, 3-20
Checked attribute, 3-21
Children, 1-2

levels, 2-13
sorting, 3-29

Clipboard, 4-5
using, 3-17

Close box, 1-6, 3-24
Close command, 1-6, 3-24
Closing objects, 1-6
Closing resource files, 1-6
Closing trees, 2- 14

Index-1

Commands
editing in MENU tree, 2-5
keystroke equivalents, 3-30
sizing in menu box, 2-6

Compilers, 4-3
Context-sensitive commands,

1-3, 3-13
Copy command, 3-17, 3-27
Creating a dialog box, 2-7
Creating a menu, 2-1
Crossed attribute, 3-22
Ctrl key

symbol in menus, 2-5
Ctrl-click, 2-12, 2-13
Ctrl-drag, 2-12, 3-3
Cut command, 3-17, 3-27

D

Default attribute, 3-21
Default button, 2-12
Delete command, 1-9, 3-27
Deleting objects, 3-10
Deleting trees/objects, 1-8
Desk accessories, 3-4, 3-30
Desk Menu, 3-10

name variations, 3-3
placeholder commands, 3-3

Dialog box
creating, 2-7

DIALOG trees, 1-3, 3-5
Disabled attribute, 3-22
Duplicate strings, 4-3

Index-2

E

Edit Bit Image Object dialog,
3-16

Edit Box Type Object dialog,
3-15

Edit Formatted Text Object
dialog, 3-15

Edit Icon Object dialog, 3-16
Edit Menu, 3-27
Edit Unformatted String Object

dialog, 2-3, 3-15
Editable attribute, 3-21
ENTRY objects, 2-3, 3-4

editing, 2-4
Exit attribute, 3-21
Exit buttons, 2-12
EXPERT protection setting, 3-25
Extent, 1-7

F

File Menu, 3-23
adding commands, 3-3

Fill Horizontal, 2-6, 3-20
Fill Vertical, 3-20
Formatted text objects, 3-8,

3-15
FREE image objects, 3-7, 3-14
FREE trees, 1-3, 3-7, 3-13
Free-string objects, 1-3, 3-7,

3-13

G

GEM AES, 4-3
GEM Graph, 3-5
GEM IconEdit, 3-28
GEM RCS

levels, 1-5
memory use, 1-9
quitting, 2-15
starting, 2-1
workspace, 1-9

Global Menu, 3-25

H

Hidden attribute, 3-21
Hide Parts command, 3-26
Hide Tools command, 3-26
Hierarchy Menu, 2-13, 3-29

Icon objects, 3-16
aspect ratio differences, 3-1
loading, 3-12

Include files, 2-15, 3-25
Info ... command, 1-9, 3-28
Item Selector, 2-14

K

Keystroke equivalents, 2-5

L

LASTOB flag, 4-2
Levels

object level, 1-5
root level, 1-5

Library file, 4-5
Load ... command, 3-12, 3-13,

3-16, 3-28
Loading bit images, 3-13
Loading icons, 3-12
LOCKED protection setting, 3-25

M

Menu bar, 1-5
Menu box

sizing, 2-4, 2-6
MENU trees, 1-2,3-4,3-10,4-4
Menu/alert buffer, 1-3
Menus

adding ENTRY, 2-4
adding TITLE, 2-3
command conventions, 2-5
copying an ENTRY, 2-4
creating, 2-1
keystroke equivalents, 2-5
sizing command extent, 2-6
sizing menu box, 2-4, 2-6
sorting, 2-7
symbols for Ctrl and Alt keys,

2-5
Merge ... command, 3-23, 4-5
Message line (ALERT trees), 3-6
Mouse techniques, 1-7

Index-3

N

Name ... command, 3-28, 4-4
Naming objects, 2-9
New command, 3-23, 4-8
NORMAL protection setting,

3-25
NOTE icon, 3-6

replacing, 3-10

o

Ob_spec value, 3-15
Object level, 1-5
Object names, 2-9, 4-2
Object trees

See "Trees"
Object types

G_BOX,3-5
G_BOXCHAR, 3-5, 3-15
G_BOXTEXT, 3-5,3-15
G_BUTTON, 3-5
G_FBOXTEXT, 3-5,3-15
G_FTEXT, 3-5, 3-15
G_IBOX,3-5
G_ICON,3-6
G_IMAGE, 3-6
G_STRING,3-5
G_ TEXT, 3-5, 3-15

Objects, 1-2
adding) to dialog, 2-8
adding to trees, 2-8, 3-9
aligning, 3-20
arranging/aligning, 4-4
background color, 3-19
border color, 3-22

Index-4

border thickness, 3-22
box for user-defined objects

(MENU trees), 2-3, 3-4
changing type, 4-4
children, 1-2
classes, 3-7
closing, 1-6
copying, 1-7,2-4,2-9,3-10
copying from clipboard, 3-17
copying to clipboard, 3-17
deleting, 1-8, 3-11
drawing order, 2-13
editing text in, 2-9
fill pattern, 3-19
icons in parts box, 3-4
in ALERT trees, 3-6
in DIALOG trees, 3-5
in FREE trees, 3-7
in MENU trees, 3-4
in PANEL trees, 3-5
LASTOB flag, 4-2
levels, 2-13
library file, 4-5
moving, 1-7
moving as a group, 4-4
moving from clipboard, 3-17
moving to clipboard, 3-17
naming, 2-9, 3-14
opening, 1-7
order in trees, 4-2
parent-child size relationship,

3-11
parents, 1-2
radio buttons, 2-10
selecting, 1-7
sizing, 1-8, 2-9, 3-11, 3-20
sorting, 2-7, 2-13, 3-29

Open ... command, 3-23, 4-8
Options Menu, 3-28
Outline attribute, 3-21
Output ... command, 3-25, 4-1

P

PANEL trees, 1-3, 3-5
using character snap, 3-20

Parent-child size relationship,
3-11

Parents, 1-2
copying, 1-7
moving, 1-7,2-12
selecting, 1-7,2-12,2-13

Parts box, 1-6, 3-4
Paste command, 3-17, 3-27
Pop-up menus, 2-10, 3-19
Porting resource files, 4-2
Protection settings, 3-25
Protection ... command, 3-25
PTEXT field, 3-15
PTMPL T field, 3-15
PVALID field, 3-15

Q

Quit command, 2-15, 3-24
Quitting GEM RCS, 2-15

R

Radio buttons, 2-10, 3-21
parent boxes, 2-11

RCS Menu, 3-30

RCS.APP, 2-1
RCS.lNF, 3-26
Remove Children command,

3-29
Remove Parent command, 4-4
Replace mode, 3-20
Resource files

chaining, 4-3
closing, 1-6
file extension, 1-5
filenames, 1-5
hand-editing, 4-1
porting, 4-2
saving, 2-14

Resources, 1-2
Root level, 1-5
RSCREATE, 4-1

generating resource file, 4-1
RSRC _FREE, 4-3

S

Save As ... command, 1-9,2-14,
3-24

Save command, 1-9, 3-24
Save Preferences command,

3-26
Saving resource files, 2-14
Screen resolution, 3-1
Scroll bars, 1-6
Selectable attribute, 3-21
Selected attribute, 2-11, 3-22
Separator line, 2-3, 3-4

extending, 2-6
Shadowed attribute, 3-21
Show Parts command, 3-26

Index-5

Show Tools command, 3-26
Size handle, 1-8, 2-8, 2-13
Sliders, 1-6
Sort Children ... command, 2-13,

3-29
Sorting objects, 2-7, 2-13, 3-29

options, 2-13
Starting GEM ReS, 2-1
STOP icon, 3-7

T

TEDINFO structure, 3-15
Text objects

aligning, 3-19
background,3-19
color, 3-19
sizing, 3-19

Tilde character, 3-15
Title bar, 1-5
TITLE objects, 2-3, 3-4
Toolkit, 1-6

using, 3-18
Tools

description, 3-19
TOOLS folder, 2-1
Touchexit attribute, 3-21
Transparent mode, 3-20
Trash can, 1-8, 3-10
Trees, 1-2

assigning types and names,
4-3

changing type, 4-4
choosing icon, 2-8
closing, 2-14
copying, 1-7

Index-6

deleting, 1-8
moving, 1-7
naming, 2-8
opening, 1-7, 2-8
restrictive types, 4-4
selecting, 1-7

Type ... command, 3-28, 4-3, 4-4 .

U

Unformatted string objects, 3-8,
3-15

Unhide Children command,
3-29

UNKNOWN trees, 4-3
Using the clipboard, 3-17
Using the toolkit, 3-18

v

Validation characters, 3-16
View window, 1-6

w

WAIT icon, 3-6
Workspace, 1-9

restoring, 1-9

KERMIT User's Guide

for GEM™ Programming

Adapted from
Fifth Edition, Revision 1

Frank da Cruz, editor

Columbia University Center for Computing Activities
New York, New York 10027

Copyright © 1981,1982,1983,1984
Trustees of Columbia University in the City of New York

Permission is granted to any individual or institution to copy or use
this document and the programs described in it, except for explicitly
commercial purposes.

Permission for use of KERMIT (file transfer protocol) has been granted
by Columbia University Center for Computer Activities. Cost of
inclusion of KERMIT in this product is nominal. KERMIT is available
from Columbia University for many systems.

No warranty of the software nor of the accuracy of the documentation
surrounding it is expressed or implied, and neither the authors nor
Columbia University acknowledge any liability resulting from program
or documentation errors.

For information on how to obtain KERMIT, contact:

KERMIT Distribution
Columbia University Center for Computing Activities
612 West 115th Street
New York NY 10025

The KERMIT protocol was named after Kermit the Frog, star of the
television series The Muppet Show, and is used by permisSion of
Henson Associates, Inc.

TRADEMARKS

GEM is a trademark of Digital Research Inc. MS is a trademark of
Microsoft Corporation. Atari is a trademark of Atari Corp.

Contents

1 How to Use KERMIT
KERMIT File Transfer Protocol 1-1
KERMIT Implementation. 1-1
Basic KERMIT Commands. 1-1
KERMIT Server. 1-2

2 PC DOS KERMIT Commands
Command Interface. 2-1
Notation. 2-2
Summary of KERMIT Commands 2-3
SEND. 2-4

Sending a File Group. 2-4
Sending a Single File. 2-4
SEND Command General Operation 2-4

GET. 2-5
SERVER. 2-6
BYE. 2-6
EXIT. 2-6
CONNECT. 2-7
SET. 2-7

SET BAUD-RATE. 2-8
SET DUPLEX. 2-8
SET ESCAPE. 2-9
SET FLOW-CONTROL . 2-9
SET HANDSHAKE . 2-9
SET INCOMPLETE. 2-10
SET PORT. 2-10
SET PARITY . 2-10
SET PROMPT . 2-11

3 GEM DOS KERMIT Commands
C (CONNECT) Command. 3-1
G (GET) Command. 3-2

iii

Contents

S (SEND) Command. 3-3
V (SERVER) Command . 3-3
X (EXIT) Command. 3-3
I (Image Mode) Modifier. 3-3
P (Parity) Modifier . 3-4 .

4 When Things Go Wrong
Communication Line Problems. 4-1
The Transfer is Stuck. 4-2
The Micro is Hung. 4-3
The Remote Host Went Away. 4-3
The Disk is Full . 4-4
Message Interference. 4-4
Host Errors . 4-4
File is Garbage. 4-4

5 Sample KERMIT Sessions
PC DOS to GEM DOS. 5-1
GEM DOS to PC DOS. 5-2

Tables
3-1 GEM DOS KERMIT Commands. 3-1
3-2 Modifiers Specific to the C Command 3-2

iv

Section 1

H.ow to Use KERMIT

KERMIT FILE TRANSFER PROTOCOL

KERMIT is a protocol for transferring files between computers of all
sizes over ordinary asynchronous telecommunication lines using
packets, checksums, and retransmission to promote data integrity.
KERMIT is non-proprietary, thoroughly documented, well tested, and in
wide use. The protocol and the original implementations were
developed at Columbia University and have been shared with many
other institutions, some of which have made contributions of their
own.

KERMIT IMPLEMENTATION

This implementation of KERMIT is specifically intended to enable the
following modes of communication:

• PC DOS systems to GEM™ DOS systems
• GEM DOS systems to PC DOS systems
• PC DOS systems to PC DOS systems
• GEM DOS systems to GEM DOS systems

As used in this guide, "PC DOS" refers generically to PC DOS and
MS TM_DOS. "GEM DOS" refers both to GEM DOS and operating
systems based on GEM DOS.

BASIC KERMIT COMMANDS

These are generic descriptions of the most basic KERMIT commands.
Detailed descriptions will come later. In these descriptions, local
refers to the system that you are using directly, remote. refers to the
system to which you are CONNECTed via KERMIT. Commands may
take one or more operands on the same line, and are terminated by a
carriage return.

1-1

Basic KERMIT Commands KERMIT User's Guide

SEND filespec

CONNECT

SET

SHOW

HELP

BYE

EXIT

?

KERMIT SERVER

Send the file or file group specified by filespec from
this KERMIT to the other. The name of each file is
passed to the other KERMIT in a special control
packet, so it can be stored there with the same
name. A file group is usually specified by including
"wildcard" characters like "fe" in the file specification.
Examples:

send foo.txt
send *.for

Make a "virtual terminal" connection to the remote
system. On the PC this means sending a" keyboard
input out the serial port, and displaying a" input
from the serial port on the screen. To "escape"
from a virtual terminal connection, type KERMIT's
escape character (CTRL-], control-rightbracket),
followed by the letter "c" for "Close Connection".

Establish various nonstandard settings, such as
communication line number, parity, or flow control.

Display the values of SET options.

Type a summary of KERMIT commands and what
they do.

Exit local KERMIT and cause remote KERMIT to leave
server mode.

Exit from KERMIT back to the host operating system.

Typed anywhere within a KERMIT command: List
the commands, options, or operands that are
possible at this pOint. This command mayor may
not require a carriage return, depending on the host
operating system.

A KERMIT server isa KERMIT program that does not interact directly
with the user, but only with another KERMIT program. You do not
type commands to a KERMIT server, you merely start it at one end of

1-2

KERMIT User's Guide KERMIT Server

the connection, and then type all further commands at the other end.
The server is run on the remote computer, which is normally the
microcomputer receiving the files.

You can give as many SEND and GET commands as you like, and
when you're finished transferring files, you can give the BYE command,
which sends a message to the remote KERMIT server to log itself out.

Here's an example of the use of a KERMIT server. The user is sitting
at a PC DOS computer, and a GEM DOS computer's KERMIT is in
server mode.

C>ICERMIT
IBM-PC Kermit-MS V2.26
Type ? for help

Kermit-MS>GET SAMPLE.GEM
Kermit-MS>SEND *.APP
Kermit-MS>BYE

Here are basic the commands available for talking to servers.

SEND filespec

GET filespec

BYE

Sends a file or file group from the local host to the
remote host in the normal way.

Ask the remote host to send a file or file group.
Example:

get *.c

Shut down the remote server and exit from KERMIT.

End of Section 1

1-3

Section 2

PC DOS KERMIT Commands

COMMAND INTERFACE

KERMIT has an interactive keyword-style command interface, which is
roughly as follows: In response to the "KERMIT-MS>" prompt you may
type a keyword, such as SEND, SERVER, or BYE, possibly followed by
additional keywords or operands, each of which is called a field. You
can abbreviate keywords (but not file names) to any length that makes
them distinguishable from any other keyword valid for that field. You
can type a question mark at any time to get information about what's
expected or valid at that point.

In this example, the user types "set" and then a question mark to find
out what the SET options are. The user then continues the command
at the point where the question mark was typed, adding a "d" and
another question mark to see what set options start with "d". The
user then adds a "u" to select "duplex" (the only SET option that starts
with "du") followed by an ESC (shown here by a dollar sign) to
complete the current field and issue the guide word "(to)" for the next
one, then another question mark to see what the possibilities are, and
so forth. The command is finally terminated by a carriage return.
Before carriage return is typed, however, the command can be edited
using the Backspace key. Finally, the same command is entered again
with a minimum of keystrokes, with each field abbreviated to its
shortest unique length. In the example, the parts the user types are in
boldface type; all the rest is system typeout:

2-1

Command Interface KERMIT User's Guide

Kermit-MS>set ? one of the following:
debugging delay duplex escape
file handshake IBM line
parity receive send

Kermit-MS>set d? one of the following:
debugging delay duplex

Kermit-MS>set du$plex (to) ? one of the following:
full half

Kermit-MS>set duplex (to) h$alf
Kermit-MS>set du h

NOTATION

The command descriptions use the following notation:

anything

[anything]

number

character

A parameter - the symbol in italics is replaced by an
argument of the specified type (number, filename, etc).

Optional field. If omitted, defaults to an appropriate
value.

A whole number, entered in prevailing notation of the
system.

A single character, entered literally, or as a number
(perhaps octal or hexadecimal) representing the ASCII
value of the character.

floating-point-number

filespec

"X

2-2

A "real" number, possibly containing a decimal point and
a fractional part.

A file specification: a filename and extension. Can also
include. a search path, device/directory name or other
qualifying information, and "wildcard" or pattern
matching characters to denote a group of files.

A control character may be written using "uparrow" or
"caret" notation. Control characters are produced by
holding down the key marked Ctrl or Control and typing
the appropriate character--for example, Ctrl-X.

KERMIT User's Guide Notation

Commands are shown in upper case, but can be entered in any
combination of upper and lower case.

SUMMARY OF KERMIT COMMANDS

Here is a brief list of the KERMIT commands described in this manual.

For exchanging files:
SEND, GET

For connecting to a remote host:
CONNECT, SET PORT, SET PARITY, SET BAUD

For acting as a server:
SERVER

For talking to a server:
BYE, GET, SEND

For interrupting transmission:
Control-X, Control-Z, Control-C, Control-E

Getting information:
HELP, SHOW

leaving the program:
BYE, EXIT

If you have a file called KERMIT.INI in your default or home disk, KERMIT
will execute the commands in it lJpon initial startup. KERMIT.INI may
contain any KERMIT commands (for instance, SET commands) to
configure KERMIT to various systems or communications media.
KERMIT.lNI must either be in the current connected directory or in a
directory in the search path.

2-3

SEND

SEND

Syntax:

Sending a single file:

SEND NONWILD-FILESPECl [NONWILD-FILESPEC2]

Sending multiple files:

SEND WILD-FILESPECl

KERMIT User's Guide

The SEND command causes a file or file group to be sent to the other
system. There are two forms of the command, depending on whether
filespec1 contains "wildcard" characters. Use of wildcard characters is
the method of indicating a group of files in a single file specification.
For instance, if FOO.FOR is a single file, a FORTRAN program named
FOO, then "'.FOR might be a group of FORTRAN programs.

Sending a File Group

If filespec1 contains wildcard characters, then all matching files will be
sent, in directory-listing order.

Sending a Single File

If filespec1 does not contain any wildcard characters, then the single
file specified by filespec 1 will be sent. Optionally, filespec2 may be
used to specify the name under which the file will arrive at the target
system; filespec2 is not parsed or validated locally in any way. If
filespec2 is not specified, the file will be sent with its own name.

SEND Command General Operation

Files will be sent with their filename and filetype (for instance FOO.BAR).

The sending KERMIT will also ask the other KERMIT whether it can
handle a special prefix encoding for r~peated characters. If it can,
then files with long strings of repeated characters will be transmitted
very efficiently. Columnar data, highly indented text, and binary files
are the major beneficiaries of this technique.

If you're running KERMIT locally, you should have already run KERMIT
on the remote system.

2-4

KERMIT User's Guide SEND

Once you give KERMIT the SEND command, the name of each file will
be printed on your screen as the transfer begins, and information will
be displayed to indicate the packet traffic. When the specified
operation is complete, the program will sound a beep, and the status
of the operation will be indicated by a message like OK, Complete,
Interrupted, or Failed.

If you see many packet retry indications, you are probably suffering
from a noisy connection.

If you notice a file being sent that you do not really want to send, you
may cancel the operation immediately by typing either Control-X or
Control-Z. If you are sending a file group, Control-X causes the
current file to be skipped and KERMIT to go on to the next file, while
Control-Z cancels sending the entire group and returns you to KERMIT
command level.

GET

LOCAL ONLY -- Syntax: GET [REMOTE-FILESPEC]

The GET command requests a remote KERMIT server to send the file
or file group specified by remote-filespec.

The GET command can be used only when KERMIT is local, with a
KERMIT server on the other end of the line.

The remote filespec is any string that can be a legal file specification
for the remote system; it is not parsed or validated locally. As files
arrive, their names will be displayed on your screen, along with a
continuous indication of the packet traffic. As in the SEND command,
you may type Control-X to request that the current incoming file be
canceled, Control-Z to request that the entire incoming batch be
canceled.

If the remote KERMIT is not capable of expanding wildcards, then you
will probably get an error message back from it like "file not found".
(Remember that the Atari™ ST does not support the use of wildcard
characters with the GET command.)

Optional Syntax: If you are requesting a single file, you may type the
GET command without a filespec. In that case, KERMIT programs that

2-5

GET KERMIT User's Guide

implement the optional GET syntax will prompt you for the remote
filespec on the subsequent line, and the name to store it under when
it arrives on the line after that:

Kermit-MS>get
Remote Source File: aux. txt
Local Destination File: auxfile.txt

SERVER

REMOTE ONL V -- Syntax: SERVER

The SERVER command instructs KERMIT to cease taking commands
from the keyboard and to receive all further instructions in the form of
KERMIT packets from another system.

After issuing this command, go back to your local system and issue
SEND, GET, BVE, or other server-oriented commands from there.
When you are finished transfering files, use the BVE command to shut
down and log out the KERMIT server when you are done with it.

Any nonstandard parameters should be selected with SET commands
before putting KERMIT in server mode.

BVE

LOCAL ONL V -- Syntax: BYE

When running as a local KERMIT talking to a KERMIT server, use the
BVE command to shut down and log out the server. This will also exit
from the local KERMIT.

EXIT

REMOTE ONL V -- Syntax: EXIT

When running as a KERMIT server, use Ctrl-C and then the EXIT
command to return to the host operating system after the file transfer
is completed.

2-6

KERMIT User's Guide CONNECT

CONNECT

LOCAL ONLY -- Syntax: CONNECT [TERMINAL-DESIGNATOR]

Establish a terminal connection to the system at the other end of the
communication line, usually by means of the the seri.al port. Get back
to the local KERMIT by typing the escape character followed by a
single character "argument." Several single-character arguments are
possible:

M Toggle status line
C Close the connection and return to the local KERMIT.
S Show status of the connection.
B Send a BREAK signal.
a Quit logging session transcript.
R Resume logging session transcript.
? List all the possible single-character arguments.
"] Typing the escape character twice sends one copy of it to the

connected host.

SET

Syntax: SET PARAMETER [OPTION] [VALUE]

Establish or modify various parameters for file transfer or terminal
connection.

You can use the SET ESCAPE command to define a different escape
character, and SET PARITY, SET DUPLEX, SET FLOW-CONTROL, SET
HANDSHAKE to establish or change those parameters.

When a file transfer operation begins, the two KERMITs automatically
exchange special initialization messages, in which each program
provides the other with certain information about itself. This
information includes the maximum packet size it wants to receive, the
timeout interval it wants the other KERMIT to use, the number and
type of padding characters it needs, the end-of-line character it needs
to terminate each packet (if any), the block check type, the desired
prefixes for control characters, characters with the "high bit" set, and
repeated characters. Each KERMtT program has its own preset

2-7

SET KERMIT User's Guide

"default" values for these parameters, and you normally need not
concern yourself with them. You can examine their values with the
SHOW command; the SET command is provided to allow you to
change them in order to adapt to unusual conditions.

The following parameters may be SET:

BAUD-RATE
DUPLEX

ESCAPE
FLOW-CONTROL
HANDSHAKE
INCOMpLETE
PARITY
PORT
PROMPT

SET BAUD-RATE

Set the speed of the current communications port
For terminal connection, full (remote echo) or half
(local echo)
Character for terminal connection
Selecting flow control method, like XONIXOFF
For turning around half duplex communication line
What to do with an incomplete file
Character parity to use
For switching communication ports
For changing the program's command prompt

Set or change the baud rate (approximate translation: transmission
speed in bits per second) on the currently selected communicati'ons
device. The way of specifying the baud rate varies from system to
system; in most cases, the actual number (such as 1200 or 9600) is
typed. Systems that do not provide this command generally expect
that the speed of the line has already been set appropriately outside
of KERMIT.

SET DUPLEX

Syntax: SET DUPLEX KEYWORD

For use when CONNECTed to a remote system. The keyword choices
are FULL and HALF. FULL means the remote system echoes the
characters you type, HALF means the local system echoes them. FUll
is the default, and is used by most hosts. Half duplex is also called
"Iocal echo."

2-8

KERMIT User's Guide SET

SET ESCAPE

Syntax: SET ESCAPE CHARACTER

Specify or change the character you want to use to "escape" from
remote connections back to KERMIT. This would normally be a
character you don't expect to be using on the remote system, perhaps
a control character like "\, "], "", or "_. Most versions of KERMIT use
one of these by default. After you type the escape character, you
must follow it by a single-character "argument", such as "C" for Close
Connection. The arguments are listed under the description of the
CONNECT command, earlier in this section.

SET FLOW-CONTROL

Syntax: SET FLOW-CONTROL OPTION

For communicating with full duplex systems. System-level flow
control is not necessary to the KERMIT protocol, but it can help to use
it if the same method is available on both systems. The most
common type of flow control on full duplex systems is XON/XOFF.

SET HANDSHAKE

Syntax: SET HANDSHAKE OPTION

For communicating with half duplex systems. This lets you specify the
line turnaround character sent by the half duplex host to indicate it
has ended its transmission and is granting you permission to transmit.
When a handshake is set, KERMIT will not send a packet until the half
duplex host has sent the specified character (or a timeout has
occurred). The options may include:

NONE

XOFF
XON
BELL
CR
LF
ESC

No handshake; undo the effect of any previous SET
HANDSHAKE.
Control-S.
Control-Q.
Control-G.
Carriage Return, Control-M.
Linefeed, Control-J.
Escape, Control-[.

2-9

SET KERMIT User's Guide

SET INCOMPLETE

Syntax: SET INCOMPLETE OPTION

Specify what to do when a file transfer fails" before it is completed.
The options are DISCARD (the default) and KEEP. If you choose KEEP,
then if a transfer fails to complete successfully, you will be able to
keep the incomplete part that was received.

SET PORT

Syntax: SET PORT TERMINAL-DESIGNATOR

Specify the communications port for file transfer or CONNECT. This
command is found on microcomputer KERMITs that run in "local"
mode: SET PORT does not change the remote/local status but simply
selects a different port for local operation.

SET PARITV

Syntax: SET PARITY KEYWORD

Parity is a techn,ique used by communications equipment for detecting
errors on a per-character basis; the "8th bit" of each character acts as
a check bit for the other seven bits. KERMIT uses block checks to
detect errors on a per-packet basis, and it does not use character
parity. However, some systems that KERMIT runs on, or equipment
through which these systems communicate, may be using character
parity. If KERMIT does not know about this, arriving data will have
been modified and the block check will appear to be wrong, and
packets will be rejected.

If parity is being used on the communication line, you must inform
both KERMITs, so the desired parity can be added to outgoing
characters, and stripped from incoming ones. Both KERMITs should be
set to the same parity. The specified parity is used both for terminal
connection (CONNECT) and file transfer (SEND, RECEIVE, GET).

2-10

KERMIT User's Guide

The choices for SET PARITY are:

NONE (the default) eight data bits and no parity bit.

MARK seven data bits with the parity bif set to one.

SPACE seven data bits with the parity bit set to zero.

SET

EVEN seven data bits with the parity bit set to make the overall
parity even.

ODD seven data bits with the parity bit set to make the overall
parity odd.

NONE means no parity processing is done, and the 8th bit of each
character can be used for data when transmitting binary files.

If you have set parity to ODD, EVEN, MARK, or SPACE, then advanced
versions of KERMIT will request that binary files will be transferred
using 8th-bit prefixing. If the KERMIT on the other side knows how to
do 8th-bit prefixing, then binary files can be transmitted successfully.
If NONE is specified, 8th-bit prefixing will not be requested. (PC DOS
KERMIT has 8th-bit prefixing; GEM DOS KERMIT does not. However,
GEM DOS KERMIT does have the image mode modifier, described in
the next section.)

SET PROMPT

This allows you to change the program's prompt. This is particularly
useful if you are using KERMIT to transfer files between two systems
of the same kind, in which case you can change the prompts of the
KERMIT programs involved to include appropriate distinguishing
information.

End of Section 2

2-11

~ectlon ~

GEM DOS KERMIT Commands

This section describes the commands for the GEM DOS
implementation of KERMIT. Each command in this section is described
in terms of how it differs from its implementation under PC DOS.
Unless indicated otherwise, the commands operate as described in
Section 2.

When the command form is given, the optional command modifiers are
contained within square brackets ([1). The command modifiers are
listed at the end of this section. Note that the C command has some
modifiers that are unique to it. They are listed under the description
of the C command.

GEM DOS KERMIT uses the commands in the following table.

Table 3-1. GEM DOS KERMIT Commands

Command Description

C Connect terminal emulator.
G Get files from remote server.
S Send file
V Enter remote server.
X Exit r~mote KERMIT.

C (CONNECT) COMMAND

The C command initiates the terminal emulator. (The default escape
sequence is Ctrl-]C.)

The C command uses the form:

KERMIT c[phe] [parity]

Some of the C command modifiers differ from the modifiers used by

3-1

C (CONNECT) Command KERMIT User's Guide

the other commands. The following table describes the modifiers
specific to the C command.

Table 3-2. Modifiers Specific to the C Command

Modifier Description

p Sets parity. Valid arguments are listed under "P (Parity)
Modifier," at the end of this section.

h Sets half duplex (also known as loc'al echo).

e Lets you define an escape character other than the
default of CNTRL-]c.

When in connect mode, you can toggle the h state by typing
<escape-char> followed by h. <escape-char>? will print help on the
valid things you can type after an escape character. Any character not
on the list is a no-op, and the character is not transmitted.

G (GET) COMMAND

The G command gets files from a server. The G command uses the
form:

KERM IT 9 [i p] -[pa r i t y] f i 1 e [f i 1 e 2 •••]

Binary files must be transferred in image mode.

A special note is necessary on wildcardii1g. It is a feature of the run
time library that wildcards on the command line are expanded so that
the program need not worry about wildcard expansion. When you get
files from' a remote server, you want wildcard expansion to take place
at the remote end, not the local end. The way around this is to
enclose the string in quotes as in the following example:

KERMIT 9 "*.c" "*.h"

3-2

KERMIT User's Guide S (SEND) Command

S (SEND) COMMAND

The S command sends one or more files to a remote KERMIT.

Wildcards are supported; multiple files are supported.

The S command uses the form:

KERMIT s[ip] [parity] file [file2 .••]

v (SERVER) COMMAND

The V command initiates the server mode. The V command uses the
form:

KERMIT v[ip] [parity]

The server mode does the following:

• Send files - (Respond to a Get command)
• Receive files - (Respond to a Send command)
• Exit - (Respond to Exit command)

Note -that you are either in image mode or ASCII mode for the entire
server session.

x (EXIT) COMMAND

The X command is the same as the KERMIT BYE command. It causes
a remote KERMIT to exit, and logs you off the system at the same
time.

The X command uses the form:

KERMIT x[p] [parity]

I (IMAGE MODE) MODIFIER

The I modifier initiates image mode, which supresses the end-ot-line
conversion to allow you to transfer binary tiles. KERMIT marks the
end-ot-line with a <CR> <IF>. When not in image mode, KERMIT

3-3

I (Image Mode) Modifier KERMIT User's Guide

always looks for this sequence and converts it to a host-specific end
of-line. When image mode is initiated, this conversion is turned off.
This allows you to send an executable file without having characters
dropped out.

If you are transferring files from one GEM DOS system to another, all
of the files can be sent in image mode because you have the .same
file format. This is not true when gOing to a different operating
system.

The following example sends the files FILE1, FILE2, and FILE3 in image
mode:

KERMIT si filel file2 file3

P (PARITy) MODIFIER

The P modifier causes characters transmitted to be encoded according
to the particular parity rule. The default is none. Parity is set by
specifying the P modifier with one of the following arguments:

E Even
o Odd
S Space
M Mark
N None

End of Section 3

3-4

bectlOn 4

When Things Go Wrong

Connecting two computers can be a tricky business, and many things
can go wrong. Before you can transfer files at all, you must first
establish terminal communication. But successful terminal connection
does not necessarily mean that file transfer will also work. And even
when file transfer seems to be working, things can happen to ruin it.

COMMUNICATION LINE PROBLEMS

If you have a version of KERMIT on your microcomputer, but the
CONNECT command doesn't seem to work at all, please do the
following:

• Make sure all the required physical connections have been made
and have not wiggled loose. If you are using a modem, make
sure the carrier light is on.

• If you have more than one connector on your micro, make sure
you are using the right one.

• Make sure that the port is set to the right communication speed,
or baud rate. Use the SHOW command to find out what the
current baud rate is. KERMIT has a SET BAUD command if you
need to change the baud rate.

• Make sure that the other communication line parameters, like
parity, bits per character, handshake, and flow control are set
correctly.

You must consult the appropriate manuals for the systems and
equipment in question.

If all settings and connections appear to be correct, and
communication still does not take place, the fault may be in your
modem. Internal modems (that plug into a slot inside the
microcomputer chassis) do not work with KERMIT.

4-1

Communication Line Problems KERMIT User's Guide

KERMIT normally expects to have full control of the communication
port. However, it is sometimes the case that some communications
equipment controls the line between the two computers on either end.
Examples include modems (particularly "smart" modems), port
contention or selection units, multiplexers, local networks, and wide
area networks. Such equipment can interfere with the KERMIT file
transfer protocol in various ways:

• It can impose QM!!y upon the communication line. This means
that the 8th bit of each character is used by the equipment to
check for correct transmission. Use of parity will:

- Cause packet checksums to appear incorrect to the receiver
and foil any attempt at file transfer. In most cases, not even
the first packet will get through.

- Prevent the use of the 8th bit for binary file data.

• If terminal connection works but file transfer does not, parity is
the most likely culprit. To overcome this impediment, you should
find out what parity is being used and inform KERMIT using the
SET PARITY command.

• Communications equipment can also interpret certain characters
in the data stream as commands rather than passing them along
to the other side. For instance, you might find your "smart"
modem suddenly disconnecting you and placing a call to
Tasmania. The only way to work around such problems is to put
the device into "transparent" or "binary" mode. Most .
communication devices have a way to do this; consult the
appropriate manual. In some cases, transparent mode will also
cancel the parity processing and allow the use of the 8th bit for
data.

THE TRANSFER IS STUCK

There are various ways in which KERMIT file transfers can become
stuck, but since many hosts are capable of generating timeout
interrupts when input doesn't appear quickly enough, they can usually
resend or "NAK" (negatively acknowtedge) lost packets. Nevertheless,

4-2

KERMIT User's Guide The Transfer is Stuck

if a transfer seems to be stuck, you can type Ctrl-C or Ctrl-Break to
simulate a timeout.

The following sections discuss various reasons why a transfer in
progress could become stuck. Before examining these, first make sure
that you really have a KERMIT on the other end of the line, and you
have issued the appropriate command: SEND, RECEIVE, or SERVER. If
the remote side is not a server, remember that you must connect back
between each transfer and issue a new SEND or RECEIVE command.

THE MICRO IS HUNG

The micro itself sometimes becomes hung for reasons beyond
KERMIT's control, such as power fluctuations. If the micro's screen
has not been updated for a long time, then the micro may be hung.
Try these steps (in the following order):

• Check the connection. Make sure no connectors have wiggled
loose from their sockets. If you're using a modem, make sure you
still have a carrier signal. Reestablish your connection if you have
to.

• Press Ctrl-C to wake the micro up. This should clear up any
protocol deadlock.

• If the problem was not a deadlock, restart the micro and then
restart KERMIT, You may have to stop and restart KERMIT on the
remote host.

THE REMOTE HOST WENT AWAY

If your local system is working but the transfer is hung, maybe the
remote host or the remote KERMIT program crashed.

4-3

The Disk is Full KERMIT User's Guide

THE DISK IS FULL

If your local floppy disk or remote directory fills up, the KERMIT on the
machine where this occurs will inform you and then terminate the
transfer. You can continue the transfer by repeating the whole
procedure either with a fresh floppy or after cleaning up your
directory.

MESSAGE INTERFERENCE

You may find that file transfers fail occasionally and upredictably. One
explanation could be that terminal messages are being mixed with
your file packet data. These could include system broadcast messages
(like "System is going down in 30 minutes"), messages from other
users ("Hi Fred, what's that KERMIT program you're always running?"),
notifications that you have requested (lilt's 7:30, go home!" or "You
have mail from ... "). Most KERMIT programs attempt to disable intrusive
messages automatically, but not all can be guaranteed to do so. It
may be necessary for you to "turn off" such messages before starting
KERMIT.

HOST ERRORS

Various error conditions can occur on the remote host that could
effect file transmission. Whenever any such error occurs, the remote
KERMIT normally attempts to send an informative error message to the
local one, and then breaks transmission, putting you back at KERMIT
command level on the local system.

FILE IS GARBAGE

There are certain conditions under which KERMIT can believe it
transferred a file correctly when in fact it did not. The most likely
cause has to do with the tricky business of file attributes, such as text
vs. binary, 7-bit vs. 8-bit, blocked vs. stream, and so forth. Some
systems have their own peculiarities (the VAX is one), and for them
KERMIT has special commands to allow you to specify how a file

4-4

KERMIT User's Guide File is Garbage

should be sent or stored. However, these difficulties usually crop up
only when sending binary files. Textual files should normally present
no problem between any two KERMIT programs.

End of Section 4

4-5

\:)eCliOfl ::>

Sample KERMIT Sessions

The following describes typical simple file transfers from a PC DOS
system to a GEM DOS system, and from a GEM DOS system to a PC
DOS 'System.

PC DOS TO GEM DOS

To transfer a file from a PC DOS system to a GEM DOS system, do the
following:

1. On the GEM DOS system, double-click on COMMAND.PRG to go
out to the command line interpreter {e}.

2. Put the GEM DOS system into server mode by typing at the
command line interpreter:

{c}kermit v

or

{c}kermit vi

Use v for ASCII files and vi for non-ASCII files. The following
banner indicates that you are in KERMIT:

Atari ST Kermit version 3.0(4) 3/14/85

3. At the PC DOS machine, type the following:

C>kermit
IBM-PC Kermit-MS V2.26
Type ? for help

Kermit-MS>send filename. ext

The GEM DOS machine responds with the following:

Kermit: Receiving FILENAME. EXT

5-1

PC DOS to GEM DOS KERMIT User's Guide

3. When the PC DOS KERMIT notifies you that the sending is
completed, type the following:

Kermit-MS>bye

This takes the GEM DOS machine out of server mode, as follows:

Kermit: Done.
{c}

and returns the PC DOS machine to the operating system.

GEM DOS TO PC DOS

To transfer a file from a GEM DOS system to a PC DOS system, do the
following:

1. Put the PC DOS machine into server mode:

C>kermit
IBM-PC Kermit-MS V2.26
Type ? for help

Kermit-MS>server

2. At the GEM DOS machine, type the following:

{c}kermit s filename. ext

or

{c}kermit si filename. ext

Use s for ASCII files and si for non-ASCII files.

5-2

KERMIT User's Guide GEM DOS to PC DOS

3. The GEM DOS shows your progress with the following:

Atari ST Kermit version 3.0(4) 3/14/85
Kermit: Sending FILENAME.EXT
Kermit: Done.
{c}

4. When you receive the Done message, return to the PC DOS
machine, type Ctrl-C to leave server mode, and then the
following:

Kermit-MS>exit

This returns you to the operating system.

End of Section 5

5-3

Index

? command, 1-2

A

Arguments, 2-7, 2-9
ASCII mode, 3-3

B

Baud rate, 2-8, 4-1
Binary files, 2-11, 3-2, 3-3, 4-2,

4-4
BYE command, 1-2, 1-3, 2-6

c

C (CONNECT) command, 3-1
Canceling a file transfer, 2-5
Check bit, 2-10
Command descriptions

notation, 2-2
Command interface, 2-1
Command parsing, 2-1
Command summary, 2-3
Commands

GEM DOS KERMIT, 3-1
PC DOS KERMIT, 2-1

Communication line problems,
4-1

CONNECT command, 1-2, 2-7

Control-X, 2-5
Control-Z, 2-5

D

DISCARD; 2-10
Disk full, 4-4
Duplex, 2-8

E

Eighth-bit prefixing, 2-11
Error recovery, 4-1
Escape character, 1-2
Escape character for CONNECT,

2-9
EXIT command, 1-2, 2-6

F

Field, 2-1
File

sending, 2-4
File attributes, 4-4
File group

sending, 2-4
Flow control, 2-9
Full duplex, 2-8
Full duplex systems, 2-9

Index-1

G

G (GET) command, 3-2
GEM DOS, 1-1
GET command, 1-3, 2-5

H

Half duplex, 2-8
Half duplex systems, 2-9
Handshake, 2-9

options, 2-9
HELP command, 1-2

Image mode, 3-2, 3-3
Implementation, 1-1
Incomplete file transfer, 2-10
Initial filespec, 2-4
Internal modem, 4-1

K

KEEP, 2-10
KERMIT Commands, 1-1
KERMIT.lNI, 2-3
Keyword, 2-1

L

Local, 1-1
Local echo, 2-8

Index-2

M

Modem, 4-1

N

NAK,4-2
Network, 4-1
Nonstandard parameters, 2-6

o

Operand, 2-1

p

Parameters (SET command), 2-8
Parity, 2-10, 4-2

keywords, 2-11
Parity modifier, 3-4
PC DOS, 1-1
Port, 2-10
Prompt, 2-1, 2-11

R

Remote, 1-1
Remote filespec, 2-5
Repeated character

compression, 2-4

s

S (SEND) command, 3-3

SEND command, 1-2, 1-3, 2-4
Server, 1-2

basic commands, 1-3
SERVER command, 2-6
SET command, 1-2, 2-7
SHOW command, 1-2
Smart modem, 4-1, 4-2

T

Timeout interrupts, 4-2

v

V (SERVER) command, 3-3
Virtual terminal, 1-2

w

Wildcard characters, 1-2, 2-4
GEM DOS KERMIT, 3-2

x

GET command and Atari ST,
2-5

X (EXIT) command, 3-3
XON/XOFF,2-9

Index-3

GEM SID-86 ™

User's Guide

COPYRIGHT

Copyright © 1986 Digital Research Inc. All rights reserved. No part of this publication
may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated
into any language or computer language, in any form or by any means, electronic,
mechanical, magnetic, optical, chemical, manual or otherwise, without the prior written
permission of Digital Research Inc., 60 Garden Court, Box DRI, Monterey California,
93942.

DISCLAIMER

DIGITAL RESEARCH INC. MAKES NO REPRESENTATIONS OR WARRANTIES WITH
RESPECT TO THE CONTENTS HEREOF AND SPECIFICALLY DISCLAIMS ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE.
Further, Digital Research Inc. reserves the right to revise this publication and to make
changes from time to time in the content hereof without obligation of Digital Research
Inc. to notify any person of such revision or changes.

NOTICE TO USER

From time to time changes are made in the filenames and in the files actually included
on the distribution disk. This manual should not be construed as a representation or
warranty that such files or facilities exist on the distribution disk or as part of the
materials and programs distributed. Distribution disks often include a "READ.ME" file
explaining variations from the manual that constitute modification of the manual and
the items included therewith. Be sure to read this file before using the software.

TRADEMARKS

Digital Research and its logo are registered trademarks of Digital Research Inc. GEM,
GEM Desktop, GEM SID-86, LINK 86, RASM-86, and the GEM logo are trademarks of
Digital Research Inc. IBM is a registered trademark of International Business Machines
Corp. Microsoft is a registered trademark of Microsoft Corporation.

* Third Edition: June 1986 *

Contents

1 GEM SID-86 Operation
Invoking GEM SID-86. 1-1
Command Conventions . 1-2
Specifying a 20-BIT Address . 1-2
Terminating GEM SID-86 . 1-3
Operation with Interrupts. 1-3
Using GEM SID-86 with MAP Files. 1-3

2 GEM SID-86 Expressions
Literal Hexadecimal Numbers. 2-1
Literal Decimal Numbers . 2-2
Literal Character Values. 2-2
Register Values . 2-3
Stack References. 2-3
Symbolic References. 2-4
Qualified Symbols . 2-5
Operators in Expressions. 2-6
Sample Symbolic Expressions . 2-7

3 GEM SID-86 Commands
Default Segment Values. 3-1
A (Assemble) Command. 3-2
B (Block Compare) Command. 3-4
D (Display) Command. 3-5
E (Load Program, Symbols for Execution) Command. . . . 3-7

Debugging Applications with Large Symbols. 3-9
Minus Sign. 3-10
Plus Sign. 3-10

F (Fill) Command. 3-11
G (Go) Command. 3-12
H (Hexadecimal Math) Command. 3-14
I (Input Command Tail) Command. 3-16
L (List) Command. 3-17

iii

Contents

M (Move) Command. 3-19
P (Pass POint) Command . 3-20
ai, ao (auery 1/0) Command. 3-23
R (Read) Command. 3-24
S (Set) Command. 3-26
SR (Search) Command. 3-28
T (Trace) Command. 3-30
U (Untrace) Command. 3-33
V (Value) Command. 3-34
W (Write) Command. 3-35
X (Examine CPU State) Command 3-36
Y Command (Output to 1 or 2 Screens). 3-39
? Command (Help) . 3-40
?? Command (Help) . 3-40

4 Assembly Language Syntax for A and L Commands

A GEM 510-86 Error Messages

Tables
3-1 Flag Name Abbreviations. 3-36

iv

Section 1

GEM SID-86 Operation

GEM SID-86™ is a powerful symbolic debugger for use with PC DOS.
It allows users to test and debug programs interactively using
symbolic assembly and disassembly, expressions involving
hexadecimal, decimal, ASCII, and symbolic values, permanent
breakpoints with pass counts, and trace without call.

Note: The distribution disks contain a sample GEM SID-86 session in a
file called SAMPLE.SID .

..
INVOKING GEM SID-86

To invoke GEM SID-86, do the following:

1. Start the GEM Desktop TM.

2. Open the TOOLS folder.
3. Double-click on the GEMSID.APP icon.

When GEM SID-86 is loaded into memory, it displays the following
banner and prompt:

GEMSID-86 07 May 1985 ***
Serial No. xxxx-000Q-654321
Copyright (C) 1983,1984,1985

GEM *** Version 1.1
All Rights Reserved

Digital Research Inc.

You can then load a file using the E command (described in Section 3).

1-1

Command Conventions GEM SID-86 User's Guide

COMMAND CONVENTIONS

When GEM S10-86 is ready to accept a command, it prompts you with
a pound sign, #. In response, you can type a command line, or a
CTRL-C to end the debugging session (see "Terminating GEM SID-86"
in this section). A command line can have up to 64 characters, and
must be terminated with a carriage return. GEM SID-86 does not
process the command line until a carriage return is entered.

The first character (in some cases, the first two characters) of each
command line determines the command action. The command
character can be followed by one or more arguments, which can be
symbolic expressions, filenames, or other information, depending on
the command. Arguments are separated from each other by commas
or spaces. No spaces are allowed between the command character
and the first argument. Note that if the first character of a GEM
S10-86 command line is a semicolon (;), the entire line is treated as a
comment and ignored. Several commands (G, P, S, T, and U) can be
preceded by a minus sign. The effect of the minus sign varies
between commands. Section 3, "GEM SID-86 Commands," provides a
full explanation of the effect of the minus sign on individual
commands.

SPECIFYING A 20-BIT ADDRESS

Most GEM S10-86 commands require one or more addresses as
operands. Because the 8086 can address up to 1 megabyte of
memory, addresses must be 20-bit values. Enter a 20-bit address, as
follows:

ssss:oooo

The ssss represents an optional l6-bit segment number and 0000 is a
16-bit offset. GEM S10-86 combines these values to produce a 20-bit
effective address:

1-2

ssssO
+ 0000

eeeee

GEM 510-86 User's Guide Specifying a 20-BIT Address

The segment value, ssss, is optional. If you omit the segment value,
GEM 510-86 uses a default value appropriate to the command being
executed, as described in liE Command" in Section 3.

TERMINATING GEM 510-86

Terminate GEM 510-86 by typing a CTRL-C in response to the #
prompt. This returns control to the console handler of the operating
system. If you use GEM 510-86 to patch a file, write the file to disk
using the W command before exiting GEM 510-86.

OPERATION WITH INTERRUPTS

GEM 510-86 operates in systems with interrupts enabled or disabled,
and preserves the interrupt state of the program being executed under
GEM 510-86. When GEM S10-86 controls the CPU, either when initially
invoked or when regaining control from the program being tested, the
condition of the interrupt flag is the same as it was when GEM S10-86
was invoked, except for a few critical regions where interrupts are
disabled. While the program being tested has control of the CPU, the
user's CPU state, which can be displayed with the X command,
determines the state of the interrupt flag.

USING GEM 510-86 WITH MAP FILES

To use GEM 510-86 with compilers and assemblers that produce
Microsoft ... -format MAP files, you must first convert those MAP files to
SYM files using MAP2SYM. The correct syntax for using that utility is
as follows:

MAP2SYM <filename.map> filename.sym

End of Section 1

1-3

GEM SID-86 Expressions

An important facility of GEM SID-86 is the ability to reference absolute
machine addresses through expressions. Expressions can involve
names obtained from the program under test that are included in the
"SYM" file produced by RASM-86™ or LINK 86™. Expressions can
also consist of literal values in hexadecimal, decimal, or ASCII
character string form. You can then combine these values with various
operators to provide access to subscripted and indirectly addressed
data or program areas. This section describes expressions so that you
can incorporate them as command parameters in the individual
command forms that follow this section.

LITERAL HEXADECIMAL NUMBERS

GEM SID-86 normally accepts and displays values in hexadecimal. The
valid hexadecimal digits consist of the decimal digits 0 through 9 and
the hexadecimal digits A, B, C, 0, E, and F, corresponding to the
decimal values 10 through 15, respectively.

A literal hexadecimal number in GEM SID-86 consists of one or more
contiguous hexadecimal digits. If you type four digits, then the
leftmost digit is most significant, while the rightmost digit is least
significant. If the number contains more than four digits, the rightmost
four are taken as significant, and the remaining leftmost digits are
discarded. The following examples show the corresponding
hexadecimal and decimal values for the given input values:

Input Value Hexadecimal Value Decimal Value

1
100

fffe
10000
38001

0001
0100
FFFE
0000
8001

1
256

65534
a

32769

2-1

Literal Decimal Numbers GEM SID-86 User's Guide

LITERAL DECIMAL NUMBERS

Enter decimal numbers by preceding the number with the # symbol. In
this case, the number that follows must consist of one or more
decimal digits (0 through 9) with the most significant digit on the left
and the least significant digit on the right. Deci.mal values are padded
or truncated according to the rules of hexadecimal numbers, as
described above, by converting the decimal number to the equivalent
hexadecimal value.

The following input values produce the following internal hexadecimal
values:

Input Value

#9
#10

#256
#65535
#65545

LITERAL CHARACTER VALUES

Hexadecimal Value

000
OOOA
0100
FFFF
0009

GEM SID-86 accepts one or two graphics ASCII characters enclosed in
apostrophes as literal values in expressions. Characters remain as
typed within the paired apostrophes (that is, no case translation
occurs) with the leftmost character treated as the most significant, and
the rightmost character treated as least significant. Character strings
of length one are padded on the left with zero. Strings of length
greater than two are not allowed in expressions, except as described
in the S command.

Note that the enclosing apostrophes are not included in the character
string, nor are they included in the character count, with one
exception: a pair of contiguous apostrophes is reduced to a single
apostrophe and included in the string as a normal graphics character.

The following example shows input strings and the hexadecimal values
they produce. For these examples, note that uppercase ASCII
alphabetic characters begin at the encoded hexadecimal value 41;
lowercase alphabetic characters begin at 61; a space is hexadecimal
20; and an apostrophe is encoded as hexadecimal 27.

2-2

GEM SID-86 User's Guide

Input String

'A'
'AB'
'aA' , , , ,

, , , , , ,
, A'

'A '

REGISTER VALUES

Literal Character Values

Hexadecimal Value

0041
4142
6141
0027
2727
2041
4120

You can use the contents of registers in the CPU state of the program
under test in expressions. Simply use the register name wherever a
number would normally be valid. For example, if you k.now that at a
certain point in the program the BX register points to a data area you
want to see, the following command:

DBX

displays the desired area of memory.

Note that when assembling 8086 instructions using the A command,
register names are treated differently than in other expressions. In
particular, use of a register name in an assembly language statement
entered in the A command refers to the name of a register, and not its
contents.

STACK REFERENCES

Elements in the stack. can be included in expressions. A caret, "",
refers to the 16-bit value at the top of the stack. (pointed to by the SS
and SP registers in the user's CPU state). A sequence of n carets
refers to the nth 16-bit value on the stack.. You can use this feature
to set a breakpoint on return from a subroutine, when all that is
k.nown is that the return address is on the stack., even though the
actual value is not k.nown.

2-3

Stack References

The following commands:

G,'"
G,"'''':'''

GEM S10-86 User's Guide

set breakpoints on return from near and far subroutines, respectively.

SYMBOLIC REFERENCES

Given that a symbol table is present during a GEM S10-86 debugging
session, you can reference values associated with symbols through the
following three forms of a symbol reference:

(a) • s
(b) @s

(c) =s

where s represents a sequence of one to thirty-one characters that
match a symbol in the table.

Form (a) produces the 16-bit value corresponding to the symbol s;
that is, the value associated with the symbol in the table. Form (b)
produces the 16-bit value contained in the two memory locations
given by .s, while form (c) results in the 8-bit value at .s in memory.
Note that forms (b) and (c) use the contents of the OS register as the
segment component when fetching the 16-bit or 8-bit contents of
memory. Suppose, for example, that the input symbol table contains
two symbols, and appears as follows:

0100 GAMMA 0102 DELTA

Further, suppose that memory starting at 0100 in the segment referred
to by the OS register contains the following byte data values:

0100: 02
0101: 3E
0102: 4D
0103: 22

Based on this symbol table and these memory values, the symbol
references shown to the left below produce the hexadecimal values

2-4

GEM 510-86 User's Guide Symbolic References

shown to the right below. Recall that 16-bit memory values are
stored with the least significant byte first, and thus the word values at
0100 and 0102 are 3E02 and 2240, respectively.

Symbol Reference

• GAMMA
• DELTA
@GAMMA
@DELTA
= GAMMA
=DELTA

QUALIFIED SYMBOLS

Hexadecimal Value

0100
0102
3E02
224D
0002
004D

Duplicate symbols can occur in the symbol table due to separately
assembled or compiled modules that independently use the same
name for different subroutines or data areas. Further, block structured
languages allow nested name definitions that are identical, but non
conflicting. Thus, GEM 510-86 allows reference to "qualified symbols"
that take the following form:

Sl/S2/ • • • /Sn

The 51 through Sn represents symbols that are present in the table
during a particular session.

GEM 510-86 always searches the symbol table from the first to last
symbol in the order the symbols appear in the symbol file. For a
qualified symbol, GEM S10-86 begins by matching the first S 1 symbol,
then scans for a match with symbol 52, continuing until symbol Sn is
matched. If this search and match procedure is not successful, GEM
510-86 prints the ''1'' response to the console. Suppose, for example,
that the symbol table appears in the symbol file as follows:

0100 A 0300 B 0200 A 3EOO C 20FO A 0102 A

The memory is initialized as shown in the previous section. In the
following example, the unqualified and qualified symbol references
produce the hexadecimal values shown.

2-5

Qualified Symbols

Symbol Reference

.A
@A
.A/A
.C/A/A
=C/A/A
.B/A/A

OPERATORS IN EXPRESSIONS

GEM 510-86 User's Guide

Hexadecimal Value

0100
3E02
0200
0102
004D
20FO

Literal numbers, strings, and symbol references can be combined into
symbolic expressions using unary and binary "+" and "_" operators.
The entire sequence of numbers, symbols, and operators must be
written without embedded blanks. Further, the sequence is evaluated
from left to right, producing a four-digit hexadecimal value at each
step in the evaluation. Overflow and underflow are ignored as the
evaluation proceeds. The final value becomes the command
parameter, whose interpretation depends on the particular command
letter that precedes it.

When placed between two operands, the + indicates addition to the
previously accumulated value. The sum becomes the new
accumulated value to this pOint in the evaluation.

The - symbol causes GEM 510-86 to subtract the literal number or
symbol reference from the 16-bit value accumulated thus far in the
symbolic expression. If the expression begins with a minus sign, then
the initial accumulated value is taken as zero. That is,

-x

is computed as

a-x

2-6

GEM SID-86 User's Guide Operators in Expressions

The x is any valid symbolic expression. For example, the following
command:

DFFOO-200,-#512

is equivalent to the simple command:

DFDOO,FEOO

In commands that specify a range of addresses (8, 0, L, F, M and W),
the ending address of the range can be indicated as an offset from the
starting address. To do this, precede 'the desired offset by a plus sign.
For example, the following command:

D121,+7

displays the memory from address 121 to 128 (121 + 7). Use of the
unary plus operator at other times is not allowed.

SAMPLE SYMBOLIC EXPRESSIONS

The formulation of GEM SID-86 symbolic expressions is most often
closely related to the program structures in the program under test.
Suppose you want to debug a sorting program that contains these
data items:

LIST: names the base of a table of byte values to sort, assuming there
are no more than 255 elements, denoted by LlST(O), L1ST(1), ... ,
LlST(254).

N: is a byte variable that gives the actual number of items in LIST,
where the value of N is less than 256. The items to sort are stored in
L1ST(O) through L1ST(N-1).

I: is the byte subscript that indicates the next item to compare in the
sorting process. L1ST(I) is the next item to place in sequence, where I
is in the range 0 through N-1.

2-7

Sample Symbolic Expressions

Given these data areas, the command

D.LIST,+#254

displays the entire area reserved for sorting:

GEM S10-86 User's Guide

LIST(D), LIST(I), ••• , LIST(254)

The command

D.LIST,+=I

displays the LIST vector up to and including the next item to sort:

LIST(D), LIST(I), ••• , LIST(I)

The command

D.LIST+=I,+D

displays only LlST{I). Finally, the command

D.LIST,+=N-I

displays only the area of LIST that holds active items to sort:

LIST(D), LIST(I), ••• , LIST(N-I)

End of Section 2

2-8

Section 3

GEM SID-86 Commands

This section defines GEM SID-86 commands and their arguments.
GEM SID-86 commands give you control of program execution and
allow you to display and modify system memory and the CPU state.

DEFAULT SEGMENT VALUES

GEM SID-86 has an internal mechanism that keeps track of the current
segment value, making segment specification an optional part of a
GEM SID-86 command. GEM SID-86 divides the command set into
two types of commands:

• The first type pertains to the code segment. These commands,
which include the A (Assemble), L (List Mnemonics), P (Pass Points)
and W (Write) commands, default to the internal type-1 segment
value if no segment value is specified in the command .

• The second type pertains to the data segment. These commands,
which include the B (Block Compare), 0 (Display), F (Fill), M (Move), S
(Set), and SR (Search) commands, default to the internal type-2
segment value if no segment value is specified in the command.

When invoked, GEM SID-86 sets both segment values to O.

3-1

A Command GEM SID-86 User's Guide

A (ASSEMBLE) COMMAND

The A command assembles 8086 mnemonics directly into memory.
The A command takes the form

As

The s is the 20-bit address where assembly starts. GEM SID-86
responds to the A command by displaying the address of the memory
location where assembly begins. At this point, you enter assembly
language statements as described in Section 4. When a statement is
entered, GEM SID-86 converts it to binary, places the value(s) in
memory, and displays the address of the next available memory
location. This process continues until you enter a blank line or a line
containing only a period.

GEM SID-86 responds to invalid statements by displaying a question
mark, ?, and redisplaying the current assembly address.

Note that wherever a numeric value is valid in an assembly language
statement, an expression can be entered. There is one difference
between expressions in assembly language statements and those
appearing elsewhere in GEM SID-86. Under the A command,
references to registers refer to the names of the registers, while
elsewhere they refer to the contents of the registers. Under the A
command, there is no way to reference the contents of a register in
an expression.

Default Segment Value:

type-1

3-2

Uses default value if no segment value is specified.
When the A command explicitly specifies a value, sets
segment value to the value specified.

GEM 510-86 User's Guide A Command

Examples:

Assemble at offset 213:

#a213

Set AX register to decimal 128:

nnnn:0213 mov ax,#128

Push AX register on stack:

nnnn:0216 push ax

Call procedure whose address is the value of the symbol PROC 1:

nnnn:0217 call .procl

Test the most significant bit of the byte whose address is the value of
the second occurrence of the symbol I:

nnnn:021A test byte [.i/i], 80

Jump if zero flag set to the location whose address is the value of the
symbol DONE:

nnnn:021E jz .done

Move the contents of the memory byte whose address is the value of
the symbol ARRAY plus 4 to the AL register:

nnnn:0220 mov al,[.array+4]

3-3

B Command GEM SID-86 User's Guide

B (BLOCK COMPARE) COMMAND

The B command compares two blocks of memory and displays any
discrepancies at the screen. The B command takes the form:

8s1,fl,s2

The s 1 is the 20-bit address of the start of the first block; fl is the
offset of the final byte of the first block, and s2 is the 20-bit address
of the start of the second block. If the segment is not specified in s2,
the same value is used that was used for s 1.

Any differences in the two blocks display at the screen in the form:

a1 bl a2 b2

The a 1 and the a2 are the addresses in the blocks; b 1 and b2 are the
values at the indicated addresses. If no differences are displayed, the
blocks are identical.

Default Segment Value:

type-2

Examples:

Uses default value if no segment value is specified.
When the 8 command explicitly specifies a value, sets
segment value to the value specified.

Compare 200H bytes starting at 40:0 with the block starting at 60:0:

#b40:0,lff,60:0

Compare 256 byte array starting at offset ARRAYl in the extra
segment with ARRAY2 in the extra segment:

#bes:.arrayl,+ff,.array2

3-4

GEM 510-86 User's Guide D Command

D (DISPLAy) COMMAND

The 0 command displays the contents of memory as a-bit or 16-bit
hexadecimal values and in ASCII. The following are the possible
forms:

(a) D
(b) Os
(c) Os,f
(d) OW
(e) OWs
(f) OWs,f

The s is the 20-bit address where the display starts, and f is the 16-
bit offset within the segment specified in s where the display finishes.

Memory is displayed on one or more display lines. Each display line
shows the values of up to 16 memory locations. For the first three
forms, the display line appears as follows:

ssss:oooo bb bb ••• bb cc .•. c

The ssss is the segment being displayed, and 0000 is the offset within
segment ssss. The bb's represent the contents of the memory
locations in hexadecimal, and the c's represent the contents of
memory in ASCII. A period represents any non-graphics ASCII
character.

In response to form (a), GEM SID-86 displays memory from the 'current
display address for 12 display lines. The response to form (b) is
similar to form (a), except that the display address is first set to the
20-bit address s. Form (c) displays the memory block between
locations sand f. The next three forms are analogous to the first
three, except that the contents of memory are displayed as 16-bit
values, rather than 8-bit values, as shown:

ssss:oooo wwww wwww ••• wwwwcccc •.. cc

During a long display, you can abort the 0 command by typing CTRL
BREAK at the console.

3-5

o Command GEM 510-86 User's Guide

Default Segment Value:

type-2

Examples:

Uses default value if no segment value is specified.
When a D command explicitly specifies a value, sets
segment value to the value specified.

Display memory bytes from offset FOOH through F23H in the current
data segment:

#dfOO,f23

Display ,-, bytes starting at the location of ARRAY (I):

#d.array+=i,+#lO

Display memory words from offset BOH through FFH:

#dw#128,#255

3-6

GEM SID-86 User's Guide E Command

E (LOAD PROGRAM, SYMBOLS FOR EXECUTION) COMMAND

The E command loads a file into memory so that the next G, T, or U
command can begin program execution, and allows one or more
symbol table files to be loaded. The E command takes the forms:

(a) E <filename>
(b) E <filename> <symbol filename> {, symbol filename ... }
(c) E * < symbol filename> {, symbol filename ... }
(d) E
(e) -E (with forms (a) and (b»

Form (a) loads the file by the name <filename>. The file is assumed
to be either a :COM or .EXE file as described in the IBM ® DOS
documentation. If no filetype is specified, .EXE is assumed. To load a
.COM file, you must specify the file type with the filename. The
contents of the CS, OS, ES, SS, SP, and IP registers are altered
according to the type of file loaded. When the load is complete, GEM
SID-86 displays the start and end address of the memory block where
the file was loaded. Use the V command to redisplay this information
at a later time.

Form (b) loads the file <filename> as precedingly described, and then
loads one or more symbol table files. If the filetype is omitted from a
symbol filename, .SYM is assumed. GEM SID-86 displays the message

SYMBOLS

when it begins loading the symbol file(s). If GEM SID-86 detects an
invalid hex digit or an invalid symbol name, it displays an error
message and stops loading the symbol file. The symbols loaded up to
the time the error occurred can be displayed with the H command to
determine the exact location of the error in the .SYMfile. A maximum
of 64K bytes is available for symbol table storage.

GEM SID-86 loads symbols at the top of memory, and adjusts the
memory size word in the program segment prefix of the loaded
program accordingly. Programs often size memory only once during
initialization, so we recommend that all symbols be loaded before
executing the program being tested. No symbol files should be loaded
after program execution begins.

3-7

r: \"urnrnctna GEM SID-86 User's Guide

Form (c) does not load a program, but simply loads the indicated
symbol table file(s).

Form (d) releases all memory~ being used by GEM SID-86 for program
and/or symbol table storage.

Generally, LlNK-86 inserts a code prefix into files it creates, whose
function is to set up the environment for the program to execute.
Because the user is usually not interested in this prefix, it is
automatically executed when the file is loaded using form (a) or form
(b). If you want GEM SID-86 not to execute the prefix, you must use
form (e). You can then proceed to the pOint where the prefix transfers
control to the main program using these commands:

G,102
T

When loading a program file with the E command, GEM SID-86
releases any blocks of memory used by any previous E or R
commands or by programs executed under GEM SID-86. Thus only
one file at a time can be loaded for execution, and that file should be
loaded before any symbol tables are read. '

GEM SID-86 issues an error message if a file does not exist or cannot
be successfully loaded in the available memory.

The format of the symbol table file is that produced by RASM-86 or
LINK 86, as follows:

nnnn symboll nnnn symbo12'

The nnnn is a four-digit hexadecimal number, and spaces, tabs,
carriage returns, and line-feeds can serve as delimiters between hex
values and symbol names. Symbol names can be up to thirty-one
characters in length.

3-8

GEM SID-86 User's Guide E Command

Default Segment Value:

type-1 When an E command loads a file, sets the segment value
to the value of the CS register.

type-2 When an E command loads a file, sets the segment value
to the value of the OS register.

Examples:

load file TEST.EXE:

#etest

load file TEST.EXE and symbol table file TEST.SYM:

#etest.exe test.sym

load file TEST.EXE and symbol table files TEST.SYM, IO.SYM and
FORMAT.SYM:

#etest test io format

load only the symbol table file TEST1.SYM:

#e* testl

Debugging Applications with Large Symbols

GEM SID-86 features large symbols that have both a segment and an
offset. To debug GEM applications with large symbols, you might have
to correct the large symbol segment values.

The following forms of the E command ensure the correct large
symbol addresses for the GEM application:

E filename -symfilename
E filename +symfilename

If, after loading the GEM application and symbol file into GEM SID-86,
the symbol addresses are missing the segment value or are otherwise
in error, re-enter the E command using the E filename -symfilename
form. If the symbol addresses are still wrong, use the E filename
+symfilename form. The effects of the minus and plus signs in front
of the symbol table filename are explained below.

3-9

E Command GEM SID-86 User's Guide

Minus Sign

A minus sign (-) in front of the symbol table filename makes the
symbols relative to the GEM application's PSP (Program Segment
Prefix) plus 10h paragraphs.

When the minus sign is specified in front of the symbol table filename,
the SYM file's segment values' are constructed by adding 10h
paragraphs to the PSP segment value (which is generally the beginning
of the code segment). This sum is then added to the code and data
segment values provided in the SYM file to generate the correct
segment values for the large symbols.

The equations used to construct the code and data segment values for
the SYM file can be illustrated as follows:

PSP Segment
+ lOh Paragraphs
+ SYM file CS

= Large Symbol CS

Plus Sign

PSP Segment
+ lOh Paragraphs
+ SYM file OS

= Large Symbol OS

When a plus sign (+) is placed in front of the symbol table filename,
the start of the SYM file is offset by the value of the user code
segment.

The equations used to construct the code and data segment values for
the SYM file can be illustrated as follows:

Current User CS Current User CS
+ Current SYM file CS + Current SYM file OS

= New SYM file CS = New SYM file OS

3-10

GEM SID-86 User's Guide F Command

F (FILL) COMMAND

The F command fills an area of memory with a byte or word constant.
The following are possible forms:

(a) FS,f,b
(b) FWs,f,w

The s is a 20-bit starting address of the block to be filled, and f is a
16-bit offset of the final byte of the block within the segment
specified in s.

In response to form (a), GEM SID-86 stores the 8-bit value b in
locations s through f. In form (b), the 16-bit value w is stored in
locations s through f in standard form, low 8 bits first followed by
high 8 bits.

If s is greater than f or the value b is greater than 255, GEM S10-86
responds with a question mark. GEM S10-86 issues an error message
if the value stored in memory cannot be read back successfully,
indicating faulty or non-existent RAM at the location indicated.

Default Segment Value:

type-2 Uses default value if no segment value is specified.
When an F command explicitly specifies a value, sets the
segment value as specified.

Examples:

Fill memory from 100H through 13FH with 0:

#f100,13f,0

Fill the 256-byte block starting at ARRAY with the constant FFH:

#f.array,+255,ff

3-11

G Command GEM SID-86 User's Guide

G (GO) COMMAND

The G command transfers control to the program being tested, and
optionally sets one or two breakpoints. The following are possible
forms:

(a) G
(b) G,bl
(c) G,bl,b2
(d) Gs
(e) Gs,bl
(f) Gs,bl,b2
(g) -G (with forms a through f)

The s is a 20-bit address where program execution is to start, and b 1
and b2 are 20-bit addresses of breakpoints. If no segment value is
supplied for any of these three addresses, the segment value defaults
to the contents of the CS register.

In forms (a), (b), and (c), no starting address is specified, so GEM
SID-86 derives the 20-bit address from the CS and IP registers. Form
(a) transfers control to your program without setting any breakpoints.
Forms (b) and (c) set one and two breakpoints respectively before
passing control to your program. Forms (d), (e), and (f) are analogous
to (a), (b), and (c), except that the CS and IP registers are first set to s.

The forms in (g) are analogous to forms (a) through (f), except that
intermediate pass point displays are suppressed.

Once control has been transferred to the program under test, it
executes sequentially until a breakpoint is encountered. At this point,
GEM SID-86 regains control, clears the breakpoints set by the G
command, and indicates the address at which execution of the
program under test was interrupted, as shown:

*ssss:oooo • symbol

The ssss corresponds to the CS, 0000 corresponds to the IP where the
break occurred, and .symbol is the symbol whose value is equal to
0000, if such a symbol exists. When a breakpoint returns control to
GEM SID-86, the instruction at the breakpoint address has not yet
been executed.

3-12

GEM SID-86 User's Guide G Command

Default Segment Value:

When GEM SID-86 .regains control from a user program after a G
command, it sets the type-1 segment value to the new value of the
CS register.

Examples:

Begin program execution at address given by CS and IP registers with
no breakpoints set:

#g

Begin program execution at label START in the code segment, setting
a breakpoint at label ERROR:

#g.start,.error

Continue program execution address given by CS and IP registers, with
breakpoints at label ERROR and at the address at the top of the stack
(the return address of the procedure being executed):

#g,.error,A

Begin execution with a breakpoint at 34FH, suppressing intermediate
pass pOint display:

#-g,34f

3-13

H Command GEM SID-86 User's Guide

H (HEXADECIMAL MATH) COMMAND

The H command provides several useful arithmetic functions. The
following are the possible forms:

(a) Ha,b
(b) Ha
(c) H

Form (a) computes the sum (ssss), difference (dddd), product
(PPPPPPPp), and quotient (qqqq) with the remainder (rrrr) of two 16-bit
values. The results are displayed in hexadecimal as follows:

+ ssss - dddd * pppppppp / qqqq (rrrr)

Underflow and overflow are ignored in addition and subtraction.

Form (b) displays the value of the expression a in hexadecimal,
decimal, ASCII (if the value has a graphic ASCII equivalent), and
symbolic (if a symbol exists with a value equal to the value of the
expression) forms as shown:

hhhh #ddddd 'e' .s

Form (c) displays the symbols currently loaded in the GEM SID-86
symbol table. Each symbol is displayed in the form:

nnnn <symbol name>

You can abort the display by pressing Ctrl-C at the console.

Default Segment Value: None.

Examples:

list all symbols and values loaded with E command(s):

#h

Show the value of the symbol OPEN in hex and decimal:

#h.open

3-14

GEM SID-86 User's Guide H Command

Show the word contents of the memory location at INDEX in hex and
decimal:

#h@index

Show sum, difference, product, and quotient of 5C28H and 80H:

#h5c28,80

3-15

I Command GEM SID-86 User's Guide

I (INPUT COMMAND TAIL) COMMAND

The I command prepares a file control block and command tail buffer
in GEM SID-86's program segment prefix, and copies this information
into the program segment prefix of the last file loaded with the E
command. The command takes the following form:

I<command tail>

The < command tail> is a character string that usually contains one or
more filenames. The first filename is parsed into the default file
control block at 005CH. The optional second filename is parsed into
the second part of the default file control block beginning at 006CH.
The characters in <command tail> are also copied into the default
command buffer at 0080H. The length of <command tail> is stored
at 0080H, followed by the character string terminated with a binary
zero.

If a file has been loaded with the E command, GEM SID-86 copies the
file control block and command buffer from the program segment
prefix of SIO- 86 to the program segment prefix of the program
loaded. The location of GEM SID-86's program segment prefix can be
obtained from the 16-bit values at location 0:6. The location of the
program segment prefix of a program loaded with the E command is
the value displayed for DS on completion of the program load.

Default Segment Value: None.

Examples:

Set up a file control block at 5CH for the file FILE 1.EXE and put the
string "filel.exe" in the buffer at 80H (in the program segment prefix of
the last file loaded with an E command):

#ifilel.exe

Set up file control blocks at 5CH and 6CH for the files A:FILE 1 and
B:FllE2, and copy the string following the i into the buffer at 80H:

#ia:filel b:file2 c:file3 $px

3-16

GEM SID-86 User's Guide L Command

L (LIST) COMMAND

The l command lists the contents of memory in assembly language.
The following are possible forms:

(a) L
(b) Ls
(c) Ls,f
(d) -l
(e) -Ls
(f) -Ls,f

The s is a 20-bit address where the list starts, and f is a 16-bit offset
within the segment specified in s where the list finishes.

Each disassembled instruction is in the form:

label:
ssss:oooo <prefixes> opcode <opera~ds> <.symbol>

The label is the symbol whose value is equal to the offset 0000, if
such a symbol exists; < prefixes> are segment override, lock and
repeat prefixes; opcode is the mnemonic for the instruction;
<operands> field contains 0, 1, or 2 operands, as required by the
instruction; and <.symbol> is the symbol whose value is equal to the
numeric operand, if there is one and such a symbol exists.

Form (a) lists twelve disassembled instructions from the current list
address. Form (b) sets the list address to s and then lists twelve
instructions. Form (c) lists disassembled code from s through f. The
last three forms are analogous to the first three, except that no
symbolic information is displayed (the labels and <.symbol> fields are
omitted).

The list address is always set to the next unlisted location in
preparation for the next L command. When GEM SID-86 regains
control from a program being tested (see G, T, and U commands), the
list address is set to the current value of the CS and IP registers.

You can abort long displays by typing CTRL -BREAK during the list
process. Or, enter CTRL -S to halt the display temporarily.

The syntax of the assembly language statements produced by the L
command is described in Section 4.

3-17

L Command GEM S10-86 User's Guide

If the memory location being disassembled is not a valid 8086
instruction, GEM 510-86 displays it in the form:

??= nn

The nn is the hexadecimal value of the contents of the memory
location.

Default Segment Value:

type-1

Examples:

Uses default value if no segment value is specified.
When an L command explicitly specifies a value, sets the
segment value to the value specified.

Disassemble instructions from 243CH through 244EH:

#1243c,244e

Disassemble 20H bytes from the label FIND:

#1.find,+20

Disassemble 12 lines of code from the label ERR plus 3:

#1.err+3

3-18

GEM SID-86 User's Guide M Command

M (MOVE) COMMAND

The M command moves a block of data values from one area of
memory to another. The M command takes the following form:

Ms,f,d

The s is the 20-bit starting address of the block to be moved, f is the
offset of the final byte to be moved within the segment described by
s, and d is the 20-bit address of the first byte of the area to receive
the data. If the segment is not specified in d, the same value is used
that was used for s.

Note that if d is between sand f, part of the block being moved is
overwritten before it is moved, because data is transferred starting
from location s.

Default Segment Value:

type-2 Uses default value if no segment value is specified.
When an M command explicitly specifies a value, sets
the segment value to the value specified.

Examples:

Move 10 bytes from 20:2400 to 30: 1 00:

#m20:2400,+9,30:100

Move 64 bytes from ARRAY to ARRAY2:

#m.array,+#63,.array2

3-19

P Command GEM SID-86 User's Guide

P (PASS POINT) COMMAND

The P command sets, clears, and displays pass points. The following
are the possible forms:

(a) Pa,n
(b) Pa
(c) -Pa
(d) -P
(e) P

A pass point is a permanent breakpoint that remains in effect until it is
explicitly removed, as opposed to breakpoints set with the G
command, that must be reentered with each G command. Pass points
have associated pass counts ranging from 1 to OFFFFH. The pass
count indicates how many times the instruction at the pass point
executes before the control returns to the console. Up to sixteen pass
pOints can be set at a time.

An important distinction between breakpoints and pass points is that
when execution stops at a breakpoint, the instruction at the breakpoint
has not yet been executed. When execution stops because a pass
point whose pass count has reached 1, the instruction at the pass
point has been executed. This makes it simple to proceed from a pass
point with a G command without immediately encountering the same
pass point.

Forms (a) and (b) are used to set pass points. Form (a) sets a pass
point at address a with a pass count of n, where a is the 20-bit
address of the pass point, and n is the pass count, in the range 1 to
OFFFFH. If a pass point is already active at a, the pass count is simply
changed to n. GEM SID-86 responds with a question mark if there are
already 16 active pass points.

Form (b) sets a pass pOint at a with a pass count of 1. If a pass point
is already active at a, the pass count is simply changed to 1. GEM
SID-86 responds with a question mark if there are already 16 active
pass points.

Forms (c) and (d) are used to clear pass points. Form (c) clears the
pass point at location a. GEM SID-86 responds with a question mark
if there is no pass point set at a. Form (d) clears all the pass points.

3-20

GEM SID-86 User's Guide P Command

Form (e) displays all the active pass points in the following form:

nnnn ssss:oooo .symbol

The nnnn is the current pass count for the pass point, ssss:oooo is the
segment and offset of the pass point location, and .symbol is the
symbolic name of the offset of the pass point, if such a symbol exists.

When a pass point is encountered, GEM SID-86 displays the pass point
information in the following form:

nnnn PASS ssss:oooo .symbol

The nnnn, ssss:oooo, and .symbol are as precedingly described. Next,
GEM SID-86 displays the CPU state before the instruction at the pass
pOint is executed. GEM SID-86 then executes the instruction at the
pass pOint. If the pass count is greater than 1, GEM SID-86
decrements the pass count and transfers control back to the program
under test.

When the pass count reaches 1, GEM SID-86 displays the break
address (that of the next instruction to be executed) in the following
form:

*ssss:oooo .symbol

Once the pass count reaches 1, it remains at 1 until the pass point is
cleared or the pass count is changed with another P command.

Use pass points with the G, T, and U commands. When you use the G
or U command, you can suppress the intermediate pass point display
with the - G or -U forms (see G Command and U Command). In this
case, only the final pass points (when the pass count = 1) are
displayed. You can interrupt the G or U command before its normal
termination by pressing CTRL -BREAK at the console. GEM SID-86
aborts the G and U command when the next pass point is encountered
and prompts for the next command.

You can also use pass points with breakpoints set with the G
command. If a pass point and a breakpoint are set at the same
address, the breakpoint is encountered first. Otherwise, pass points
behave in the usual manner, decrementing the pass count until it
reaches 1 and then returning control to GEM SID-86.

3-21

P Command GEM SID-86 User's Guide

Normally, the segment registers are not displayed at pass points. You
can use the S/-S command to enable/disable the segment register
display (see S Command).

Default Segment Value:

type-l Uses this segment default if none is specified.

Examples:

Display active pass points:

#p

Set pass point at label ERROR:

#p.error

Set pass point at label PRINT with count of 17H:

#p.print,17

Clear all pass' points:

#-p

Clear pass point at label ERROR:

#-p.error

3-22

GEM SID-86 User's Guide QI, ao Command

01, 00 (OUERY 1/0) COMMAND

The QI and 00 commands allow access to any of the 65,536
input/output ports. The QI command reads data from a port; the QO
command writes data to a port. The QI command takes the following
forms:

Qln
QIWn

The n is the 16-bit port number. In the first case, GEM SID-86
displays the 8-bit value read from port n. In the second case, GEM
SID-86 displays a 16- bit value from port n.

The ao command takes the following forms:

QOn,v
QOWn,v

The n is the 16-bit port number, and v is the value to output. In the
first case, the 8-bit value v is written to port n. If v is greater than
255, GEM SID-86 responds with a question mark. In the second case,
the 16-bit value v is written to port n.

Default Segment Value: None.

Examples:

Display the 16-bit value of input port 20H:

#qiw20

Display the 8-bit value of input port 1024:

#qi#1024

Set the 16-bit output port number '20H to OFF7EH:

#qow20,FF7E

Set the 8-bit output port number 1025 to 2:

#qo#1025,2

3-23

R Command GEM S10-86 User's Guide

R (READ) COMMAND

The R command reads a file into a contiguous block of memory. The
R command takes the forms:

(a) R <filename>
(b) R<filename>,s

The <filename> is the name and type of the file to be read, and 5 is
the location to which the file is read. Form (a) lets GEM S10-86
determine- the memory location into which the file is read. Form (b)
causes GEM S10-86 to read the file into the memory segment
beginning at s. This address can have the standard form (5555:0000)

as in the following example:

#RCPM.SYS,lOOO:O

The low-order four bits of s are assumed to be zero, so GEM S10-86
reads files on a paragraph boundary.

GEM SID-86 reads the file into memory and displays the start and end
addresses of the block of memory occupied by the file. A V command
can redisplay this information at a later time. The default display
pointer (for subsequent 0 commands) is set to the start of the block
occupied by the file:

The R command does not free any memory used by another R or E
command. Thus, many files can be read into memory without
overlapping.

GEM SID-86 issues an error message if the file does not exist or there
is not enough memory to load the file.

3-24

GEM SID-86 User's Guide R Command

Default Segment Value:

type-1 Uses default value if no segment value is specified.
When an R command reads a file, GEM SID-86 sets the
segment value to the base segment where the file was
read ..

type-2 Changes this segment default. When an R command
reads a file, GEM SID-86 sets the segment value to the
base segment where the file was read.

Examples:

Read file SI086.COM into memory:

#rsid86.com

Read file TEST into memory:

#rtes,t

Read file TEST into memory starting at location 1000:0:

#rtest,lOOO:O

3-25

S Command GEM SID-86 User's Guide

S (SET) COMMAND

The S command changes the contents of bytes or words of memory.
The following are possible forms:

(a) Ss
(b) SWs
(c) S
(d) -S

where s is the 20-bit address where the change occurs.

GEM SID-86 displays the memory address and its current contents on
the following line. In response to form (a), the display is

ssss:oooo bb

and in response to form (b), the display is

ssss:oooo wwww

where bb and wwww are the contents of memory in byte and word
formats, respectively.

In response to one of these displays, you can either alter the memory
location or leave it unchanged. If you enter a valid expression, the
contents of the byte (or word) in memory is replaced with the value of
the expression. If you do not enter a value, the contents of memory
are unaffected, and the contents of the next address are displayed. In
either case, GEM SID-86 continues to display successive memory
addresses and values until you enter a period on a line by itself or
until GEM SID-86 detects an invalid expression.

In response to form (a), you can enter a string of ASCII characters,
beginning with a quotation mark and ending with a carriage return.
The characters between the quotation mark and the carriage return are
placed in memory starting at the address displayed. No case
conversion takes place. The next address displayed is the address
following the character string.

GEM SID-86 issues an error message if the value stored in memory
cannot be read back successfully, indicating faulty or non-existent
RAM at the location indicated.

3-26

GEM SID-86 User's Guide S Command

Forms (c) and (d) control the display of the segment registers when
the CPU state is displayed with the trace command and at pass points.
Form (c) turns on the segment register display; form (d) turns it off. It
is often convenient to turn off the display while debugging to allow
the CPU state display to fit on one line.

Default Segment Value:

type-2 Uses default value if no segment value is specified.
When an S command explicitly specifies a value, sets the
segment value to the value specified.

Examples:

Begin set at ARRAY (3):

#s.array+3

Set byte to 0:

1000:1234 55 0

Set 3 bytes to 'a', 'b', 'c':

1000:1235 55 "abc

Set byte to decimal 75:

1000:1238 55 #75

Terminate set command:

1000:1239 55

Enable segment register display in CPU state display:

#s

Disable segment register display in CPU state display:

#-s

3-27

SR Command GEM SID-86 User's Guide

SR (SEARCH) COMMAND

The SR (Search) command searches a block of memory for a given
pattern of numeric or ASCII values and lists the addresses where the
pattern occurs. The SR command takes the following form:

SRs,f,"string"
Ss,f,value

The s is the 20-bit starting address of the block to be searched, and
the f is the offset of the final address of the block.

The SRs,f,"string" form searches for a string of ASCII characters. The
"string" parameter specifies the string of one or more printable ASCII
characters you want to search for. Note that you may use either
single (') or double (") quotes.

The SRs,f,value form searches for a string of numerical characters.
The value parameter specifies the string of non printable ASCII
characters, numbers, and hexadecimal values you want to search for.

For each occurrence of the string or hex value, GEM SID-86 displays
the 20-bit address of the first byte of the pattern, in the following
form:

ssss:oooo

If no addresses are listed, the string or value was not found.

Default Segment Value:

type-2

3-28

Uses default value if no segment value is specified.
When an SR command explicitly specifies a value, sets
segment value to the value specified.

GEM SID-86 User's Guide SR Command

Examples:

Search the memory block between TEXTl and TEXT25 for the string
"Error":

#sr.textl,.text25,"Error"

Search the memory block between 0:0 and O:OFFFFH for the ·3-
character pattern that starts with "x", ends with "y", and has a decimal
27 in the middle:

#srO:O,ffff,"x",#27,"y"

3-29

T Command GEM SID-86 User's Guide

T (TRACE) COMMAND

The T command traces program execution for 1 to OFFFFH program
steps, displaying the CPU state before each step. The T command
takes the following forms:

(a) T
(b) Tn
(c) TW
(d) TWn
(e) - T (with forms a through d)

The n is the number of program steps to execute before returning
control to the console. If n is omitted, a single program step is
executed.

A program step is generally a single instruction, with the following
exceptions:

• If a DOS interrupt instruction is traced, the entire DOS function is
treated as one program step, and executes in real time. This is
because GEM SID-86 itself makes DOS calls, and the DOS is not
reentrant.

• If the traced instruction is a MOV or POP whose destination is a
segment register, the CPU executes the next instruction immediately.
This is because a feature of the 8086 that disables interrupts
(including the Trace Interrupt) for one instruction after a MOV or
POP loads a segment register. This allows a sequence like the
following:

MOV SS, STACKSEGMENT
MOV SP, STACKOFFSET

to be executed with no chance of an interrupt occurring between
the two instructions, at which time the stack is undefined. A
sequence of such MOV or POP instructions plus one instruction after
the sequence is considered a one program step.

• If any of the TW forms are used and the traced instruction is a
CALL, CALLF or INT, the entire called subroutine or interrupt handler
(and any subroutines called therein) is treated as a one program
step and executes in real time.

3-30

GEM SID-86 User's Guide T Command

Before each program step is executed, GEM SID-86 displays the CPU
state, the disassembled instruction to be executed, the symbolic name
of the instruction operand (if any), and the contents of the memory
location(s) referenced by the instruction (if appropriate). (See X
Command for a detailed description of the CPU state display.) If there
is a symbol whose value is equal to the IP, the symbol name followed
by a colon is displayed on the line preceding the CPU state display.
The segment registers are not normally displayed with the T
command, which allows the entire CPU state to be displayed on one
line. To enable the segment register display, use the S command (see
S Command). With the segment register display enabled, the display
of the CPU state is identical to that of the X command.

In all the forms, control transfers to the program under test at the
address indicated by the CS and IP registers. If n is not specified, as
in form (a), one program step is executed. Otherwise, GEM SID-86
executes n program steps and displays the CPU state before each
step, as in form (b). You can abort a long trace before n steps have
been executed by typing CTRL -BREAK at the console.

When n steps have been executed, GEM SID-86 displays the address
of the next instruction to be executed, along with the symbolic value
of the IP, if there is such a symbol, in the following form:

*ssss:oooo . symbol

Forms (c) and (d) are analogous to forms (a) and (b), except in the way
subroutine calls are treated. In the TW forms, the entire subroutine
called from the program level being traced is treated as a single
program step, and executes in real time. This allows tracing at a high
level of the program, ignoring subroutines that have already been
debugged, or for other reasons are not currently of interest.

If the command is preceded by a minus sign, as in form (e), symbolic
labels and symbolic operands are omitted from the CPU state display.
This can speed up the display when large symbol tables are loaded, by
skipping the symbol table lookup.

When a single instruction is being traced, interrupts are disabled for
the duration of the instruction. This prevents GEM SID-86 from
tracing through interrupt handlers when debugging on systems in
which interrupts occur frequently.

3-31

T Command GEM SID-86 User's Guide

After a T command, the list address used in the L command is set to
the address of the next instruction to be executed, and the default
segment values are set to the CS and OS register values.

Default Segment Value:

tvpe-l

tvpe-2

Examples:

When GEM S10-86 regains control from a user program
after a T command, it sets this segment value to the
value of the CS register.

When GEM S10-86 regains control from a user program
after a T command, it sets this segment value to the
value of the OS register.

Trace one program step:

#t

Trace 65535 steps:

#tffff

Trace 500 program steps with symbolic lookup disabled:

#-t#500

3-32

GEM SID-86 User's Guide U Command

U (UNTRACE) COMMAND

The U command is similar to the T command except that the CPU
state is displayed only before the first instruction is executed, rather
than before every step. The following are possible forms:

(a) U
(b) Un
(c) UW
(d) UWn
(e) -U (with forms a through d)

The n is the number of instructions to execute before returning control
to the console. You can abort the U command before n steps have
been executed by striking Ctrl-Break at the console.

Form (e) differs from the analogous T command in that GEM S10-86
disables the display of intermediate pass points (while the pass count
is greater than 1). In this case, only when the pass count reaches 1 is
the pass information displayed (see P Command).

Default Segment Value:

type-1

type-2

Examples:

When GEM SID-86 regains control from a user program
after a U command, it sets this segment value to the
value of the CS register.

When GEM SID-86 regains control from a user program
after a U command, it sets this segment value to the
value of the OS register.

Trace without display 200H steps:

#u200

Trace without display 200H steps, suppressing the intermediate pass
point display:

#-u200

3-33

V Command GEM 510-86 User's Guide

v (VALUE) COMMAND

The V command displays the start and end addresses of the block of
memory where the last file was loaded with the E or R commands,
excluding symbol tables loaded with the E command. The V command
takes the following form:

V

GEM 510-86 responds to the V command with a question mark if
neither the R nor E commands have been used.

Default Segment Value: None.

3-34

GEM 510-86 User's Guide W Command

W (WRITE) COMMAND

The W command writes the contents of a contiguous block of memory
to disk. The following are the possible forms:

(a) W <filename>
(b) W <filename> ,s,f

The <filename> is the filename and filetype of the disk file to receive
the data, and sand f are the 20-bit first and last addresses of the
block to be written. If the segment is not specified in f, GEM SID-86
uses the same value that was used for s.

With form (a), GEM SID-86 assumes the sand f values from the last
file read with an R command. If no file was read with an R command,
GEM SID-86 responds with a question mark. This form is useful for
writing out files after patches have been installed, assuming the
overall length of the file is unchanged.

With form (b), where sand f are specified as 20-bit addresses, the low
four bits of s are assumed to be O. Thus the block being written must
always start on a paragraph boundary.

If a file with the name specified in the W command already exists,
SID- 86 deletes it before writing a new file.

Default Segment Value:

type-1 Uses default value if no segment value is specified.
Change default if specified explicitly.

Examples:

Write to the file TEST.EXE the contents of the memory block read into
by the most recent R command:

#wtest.exe

Write the contents of the memory block 40:0 through 40:3FFF to the
file TEST.EXE on drive B:

#wb:test.exe,40:0,3fff

3-35

X Command GEM SID-86 User's Guide

X (EXAMINE CPU STATE) COMMAND

The X command allows you to examine and alter the CPU state of the
program under test. The X command takes the forms:

(a) X
(b) Xr
(c) Xf

The r is the name of one 8086 CPU register and f is the abbreviation
of one CPU flag. Form (a) displays the CPU state in the format:

AX BX ex SS ES IP
--------- xxxx xxx x xxxx . •
<instruction> <symbol name>

. xxxx xxx x xxxx
<memory value>

The nine hyphens at the beginning of the line indicate the state of the
nine CPU flags. Each position can be either a hyphen, indicating that
the corresponding flag is not set (0), or a l-character abbreviation of
the flag name, indicating that the flag is set (1). This table shows the
abbreviations of the flag names.

Table 3-1. Flag Name Abbreviations

Character Name

o
D
I
T
S
Z
A
P
C

Overflow
Direction
Interrupt Enable
Trap
Sign
Zero
Auxiliary Carry
Parity
Carry

The <instruction> is the disassembled instruction at the next location
to be executed, which is indicated by the CS and IP registers. If the

3-36

GEM SID-86 User's Guide X Command

symbol table contains a symbol whose value is equal to one operand
in < instruction>, the symbol name is displayed in the < symbol
name> field, preceded by a period. If instruction references memory,
the contents of the referenced location(s) are displayed in the
<memory value> field, preceded by an equal sign. Either a byte,
word, or double word value is shown, depending on the instruction. In
addition to displaying the machine state, the first form changes the
values of the default segments back to the CS and OS register values,
and the default offset for the L command to the IP register value.

Form (b) allows you to alter the registers in the CPU state of the
program being tested. The r following the X is the name of one 16-bit
CPU register. GEM SID-86 responds by displaying the name of the
register followed by its current value. If you type a carriage return,
the value of the register is not changed. If you type a valid
expression, the contents of the register are changed to the value of
the expression. In either case, the next register is then displayed. This
process continues until you enter a period or an invaUd expression, or
the last register is displayed.

Form (c) allows you to alter a flag in the CPU state of the program
being tested. GEM SID-86 responds by displaying the name of the
flag followed by its current state. If you type a carriage return, the
state of the flag is not changed. If you type a valid value, the state of
the flag is changed to that value. Only one flag can be examined or
altered with each Xf command. Set or reset flags by entering a value
of 1 or O.

Default Segment Value:

type-1

type-2

When an X command changes the value of the CS
register, GEM SID-86 changes this segment value to the
new value of the CS register.

When an X command changes the value of the OS
register, GEM SID-86 changes this segment value to the
new value of the OS register.

3-37

X Command

Examples:

Change registers starting with BP:

#xbp

Change BP to hex 2B64:

BP=1000 2b64

Change SI to decimal 12345:

SI=2000 #12345

Change 01 to value of symbol VAR plus 6:

DI=0020 var+6

Terminate X command:

CS=0040

3-38

GEM S10-86 User's Guide

GEM SID-86 User's Guide Y Command

V COMMAND (OUTPUT TO 1 OR 2 SCREENS)

The Y command controls the graphics-to-text conversions under GEM
SID-86. The forms are as follows:

YGE
YGO
YG
YME
YMD
Y

The YGE command enables the graphics image buffer. This command
causes the graphics image appearing on the screen to be saved in a
buffer before GEM SID-86 switches the screen to text. The YG

. command is used to recall the graphics image buffer to the screen.

The YGO command disables the graphics image buffer. After entering
the YGD command, the graphics image is not saved in the graphics
image buffer.

The YG command restores the graphics image to the screen. The YG
command only functions if the YGE command has enabled the
graphics image buffer. Press any character key to restore the GEM
SID-86 text to the screen.

The YME command enables multi-screen mode. If you have two
screens connected to your system, the YME command routes GEM
SID-86 to one screen and graphics to the other. This is the default if
the GEM software is not in memory when GEM S10-86 is loaded.

The YMD command disables the multi-screen mode. Both graphics
and text are displayed on a single screen. This is the default if the
GEM software is in memory at the time GEM SID-86 is loaded.

The Y command displays the status of the graphics image
save/restore buffer and the current screen mode.

3-39

? Command GEM SID-86 User's Guide

? COMMAND (HELP)
,

The? command prints a list of available GEM SID-86 commands. The
form is as follows:

?

?? COMMAND (HELP)

The ?? command prints a detailed command list that, in addition to the
GEM SID-86 commands, includes the available command options. The
form is as follows:

??

End of Section 3

3-40

Assembly Language Syntax
for A and L Commands

Section 4

In general, the syntax of the assembly language statements in the A
and L commands is standard 8086 assembly language. Several minor
exceptions appear here.

• Up to three prefixes (LOCK, repeat, segment override) can appear in
one statement, but they all must precede the opcode of the
statement. Alternately, a prefix can be entered on a line by itself.

• The distinction between byte and word string instructions is made
as follows:

byte word

LOOSB LOOSW
STOSB STOSW
SCASB SCASW
MOVSB MOVSW
CMPSB CMPSW

• The mnemonics for near and far control transfer instructions are as
follows:

• JMPS JMP
CALL
RET

JMPF
CALLF
RETF

• If the operand of a CALLF or JMPF instruction is a 20-bit absolute
address, it is entered in the form:

ssss:oooo

The ssss is the segment and 0000 is the offset of the address.

4-1

Assembly Language Syntax GEM SID-86 User's Guide

• Operands that refer to a byte or a word are ambiguous and must be
preceded either by the prefix "BYTE" or "WORD", as in the following
example:

INC BYTE [BP]
NOT WORD [1234]

Failure to supply a prefix when needed results in an error message.
(These prefixes can be abbreviated to "BY" and "Wa".)

• Operands that address memory directly are enclosed in square
brackets to distinguish them from immediate values, as in the
following example:

ADD
ADD

AX,5
AX,[5]

;add 5 to register AX
;add the contents of
;location 5 to AX

• The following are the forms of register indirect memory operands:

[pointer register]
[index register]
[pointer register + index register]

The pointer registers are BX and BP, and the index registers are SI
and 01. Any of these forms can be preceded by a numeric offset, as
in the following example:

ADD BX,[BP+SI]
ADD BX,3[BP+SI]
ADD BX,lD47[BP+SI]

End of Section 4

4-2

Appendix A

GEM SID-86 Error Messages

AMBIGUOUS OPERAND: An attempt was made to assemble a
command with an ambiguous operand. Precede the operand with the
prefix "BYTE" or "WORD".

BAD FILE NAME: A filename in an E, R, or W command is incorrectly
specified.

BAD HEX DIGIT: A SYM file being loaded with an E command has an
invalid hexadecimal digit.

CANNOT CLOSE: The disk file written by a W command cannot be
closed.

DISK READ ERROR: The disk file specified in an R command could not
be read properly.

DISK WRITE ERROR: A disk write operation could not be successfully
performed during a W command, probably, due to a full disk.

INSUFFICIENT MEMORY: There is not enough memory to load the file
specified in an R or E command.

NO FILE: The file specified in an R or E command could not be found
'on the disk.

NO SPACE: There is no space in the directory for the file being written
by a W command.

PROGRAM TERMINATED NORMALLY: The program running under GEM
S10-86 completed, or was terminated by a CTRL -BREAK.

SYMBOL LENGTH ERROR: A symbol in a SYM file being loaded with an
E command has more than thirty-one characters.

SYMBOL TABLE FULL: There is no more space in GEM SI~-86's
symbol table.

VERIFY ERROR AT 5:0: The value placed in memory by a Fill, Set,
~ove, or Assemble command could not be read back correctly,
indicating bad RAM or attempting to write to ROM or non-existent
memory at the indicated location.

A-l

Index

prompt, 1-2
? (Help) command, 3-40
?? (Help) command, 3-40

A

A (Assemble) command, 3-2
Assembly language syntax, 4-1

B

B (Blocl< Compare) command,
3-4

Binary operator, 2-6

c

Character values, 2-2
Code segment, 3-1
Command conventions, 1-2
Command line, 1-2
Commands

? (Help), 3-40
?? (Help), 3-40
A (Assemble), 3-2
B (Blocl< Compare), 3-4
D (Display), 3-5
E (Load for Execution), 3-7
F (Fill), 3-11
G (Go), 3-12

H (Hexadecimal Math), 3-14
I (Input Command Tail), 3-16
L (List), 3-17
load program, 3-7
load symbols, 3-7
M (Move), 3-19
P (Pass Point), 3-20
01 (Ouery I/O), 3-23
00 (Ouery liD), 3-23
R (Read), 3-24
S (Set), 3-26
SR (Search), 3-28
T (Trace), 3-30
U (Untrace), 3-33
V (Value), 3-34
W (Write), 3-35
X (Examine CPU State), 3-36
Y (Screen Output), 3-39

Control transfer instructions,
4-1

o

D (Display) command, 3-5
Data segment, 3-1
Decimal values, 2-2
Default segment values, 3-1

Index-1

E

E (Load for Execution)
command, 3-7

Expressions
symbolic, 2-7

F

F (Fill) command, 3-11

G

G (Go) command, 3-12
GEM Desktop, 1-1
GEM SID-86

command conventions, 1-2
interrupts, 1-3
terminating, 1-3

GEM SID-86 comma.nds, 3-1
GEMSID.APP, 1-1

H

H (Hexadecimal Math) command,
3-14

Hex values, 2-1

I (Input Command Tail)
command,3-16

Interrupts, 1-3

Index-2

L

L (List) command, 3-17
LINK 86, 2-1
Load program command, 3-7
Load symbols command, 3-7

M

M (Move) command, 3-19
MAP files, 1-3
MAP2SYM, 1-3

o

Operators
binary and unary, 2-6

p

P (Pass Point) command, 3-20
Pass points, 3-20
Prefixes, 4-1
Prompt, 1-2

Q

QI (Query I/O) command, 3-23
QO (Query I/O) command, 3-23
Qualified symbols, 2-5

R

R (Read) command, 3-24
RASM-86, 2-1
References

stack, 2-3
symbolic, 2-4

Register values, 2-3

5

S (Set) command, 3-26
SR (Search) command, 3-28
Stack references, 2-3
SYM files, 2-1
Symbolic expressions, 2-7
Symbolic references, 2-4
Symbols

qualified, 2-5

T

T (Trace) command, 3-30
Terminating GEM SID-86, 1-3
TOOLS folder, 1-1

u

U (Untrace) command, 3-33
Unary operator, 2-6

v

V (Value) command, 3-34
Values

character, 2-2
decimal, 2-2
hex, 2-1
register, 2-3

w

W (Write) command, 3-35

x

X (Examine CPU State)
command, 3-36

y

Y (Screen Output) command,
3-39

Index-3

